OPENSTEP
SPECIFICATION

October 19, 1994

Copyright0 1994 NeXT Computer, Inc. All rights reserved.
This document sets forth the OpenStep application programming interface (API).

You may down-load one copy of this specification as long as it is for purposes of study only. We look
forward to licensing third parties to create original implementations of this API. No such license is
granted or implied by the publication of this specification. If you would like information on obtaining
such a license, please contact NeXT at OpenStep@NeXT.COM.

OpenStep, NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo, Application Kit, Foundation
Kit, Interface Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. PostScript and
Display PostScript are registered trademarks of Adobe Systems, Incorporated. UNIX is a registered
trademark in the United States and other countries, licensed exclusively through X/Open Company
Limited. PANTONE is a registered trademark of Pantone, Inc. Unicode is a trademark of Unicode,
Inc. All other trademarks mentioned belong to their respective owners.

OpenStep Specification—10/19/94

Contents

Introduction

Chapter 1: Application Kit
Introduction

Classes

NSActionCell, p. 1-4
NSApplication, p. 1-6
NSBitmaplmageRep, p. 1-16
NSBox, p. 1-20

NSBrowser, p. 1-22
NSBrowserCell, p. 1-29
NSBundle Additions, p. 1-31
NSButton, p. 1-32
NSButtonCell, p. 1-35
NSCachedimageRep, p. 1-38
NSCell, p. 1-39

NSClipView, p. 1-46
NSCoder Additions, p. 1-48
NSColor, p. 1-49
NSColorList, p. 1-57
NSColorPanel, p. 1-60
NSColorPicker, p. 1-63
NSColorWell, p. 1-65
NSControl, p. 1-67
NSCStringText, p. 1-74
NSCursor, p. 1-85
NSCustomimageRep, p. 1-87

OpenStep Specification—10/19/94

NSDataLink, p. 1-88
NSDatalLinkManager, p. 1-91
NSDataLinkPanel, p. 1-95
NSEPSImageRep, p. 1-97
NSEvent, p. 1-99

NSFont, p. 1-104
NSFontManager, p. 1-108
NSFontPanel, p. 1-112
NSForm, p. 1-114
NSFormCell, p. 1-116
NSHelpPanel, p. 1-118
NSIimage, p. 1-122
NSImageRep, p. 1-129
NSMatrix, p. 1-133
NSMenu, p. 1-141
NSMenuCell, p. 1-143
NSOpenPanel, p. 1-144
NSPagelLayout, p. 1-146
NSPanel, p. 1-148
NSPasteboard, p. 1-150
NSPopUpButton, p. 1-154
NSPrinter, p. 1-157
NSPrintinfo, p. 1-164
NSPrintOperation, p. 1-167
NSPrintPanel, p. 1-171
NSResponder, p. 1-173
NSSavePanel, p. 1-176
NSScreen, p. 1-179
NSScroller, p. 1-181
NSScrollView, p. 1-184
NSSelection, p. 1-187
NSSlider, p. 1-190
NSSliderCell, p. 1-192
NSSpellChecker, p. 1-195
NSSpellServer, p. 1-199
NSSplitView, p. 1-203
NSText, p. 1-205
NSTextField, p. 1-214
NSTextFieldCell, p. 1-217
NSView, p. 1-218
NSWindow, p. 1-227
NSWorkspace, p. 1-240

OpenStep Specification—10/19/94

1-245 Protocols
NSChangeSpelling, p. 1-245
NSColorPickingCustom, p. 1-246
NSColorPickingDefault, p. 1-247
NSDraggingDestination, p. 1-250
NSDragginglinfo, p. 1-252
NSDraggingSource, p. 1-254
NSIgnoreMisspelledWords, p. 1-255
NSMenuActionResponder, p. 1-257
NSNibAwaking, p. 1-259
NSServicesRequests, p. 1-261

1-262 Application Kit Functions
Rectangle Drawing Functions, p. 1-262
Color Functions, p. 1-263
Text Functions, p. 1-264
Array Allocation Functions for Use by the NSText Class, p. 1-266
Imaging Functions, p. 1-266
Attention Panel Functions, p. 1-267
Services Menu Functions, p. 1-268
Other Application Kit Functions, p. 1-269

1-271 Types and Constants
Application, p. 1-271
Box, p. 1-271
Buttons, p. 1-272
Cells and Button Cells, p. 1-272
Color, p. 1-274
Data Link, p. 1-274
Drag Operation, p. 1-275
Event Handling, p. 1-276
Exceptions, p. 1-278
Fonts, p. 1-280
Graphics, p. 1-281
Matrix, p. 1-283
Notifications, p. 1-283
Panel, p. 1-285
Page Layout, p. 1-286
Pasteboard, p. 1-286
Printing, p. 1-287
Save Panel, p. 1-290
Scroller, p. 1-290
Text, p. 1-291

OpenStep Specification—10/19/94

View, p. 1-299
Window, p. 1-299
Workspace, p. 1-300

2-1 Chapter 2: Foundation Kit
2-1 Introduction

2-2 Classes
NSArchiver, p. 2-4
NSArray, p. 2-6
NSAssertionHandler, p. 2-10
NSAutoreleasePool, p. 2-12
NSBTreeBlock, p. 2-16
NSBTreeCursor, p. 2-19
NSBundle, p. 2-22
NSByteStore, p. 2-26
NSByteStoreFile, p. 2-31
NSCalendarDate, p. 2-33
NSCharacterSet, p. 2-38
NSCoder, p. 2-41
NSConditionLock, p. 2-45
NSConnection, p. 2-47
NSCountedSet, p. 2-51
NSData, p. 2-53
NSDate, p. 2-57
NSDeserializer, p. 2-61
NSDictionary, p. 2-62
NSDistantObject, p. 2-66
NSEnumerator, p. 2-68
NSException, p. 2-69
NSlInvocation, p. 2-74
NSLock, p. 2-76
NSMethodSignature, p. 2-77
NSMutableArray, p. 2-79
NSMutableCharacterSet, p. 2-82
NSMutableData, p. 2-84
NSMutableDictionary, p. 2-87
NSMutableSet, p. 2-89
NSMutableString, p. 2-91
NSNotification, p. 2-94
NSNotificationCenter, p. 2-96
NSNotificationQueue, p. 2-99

OpenStep Specification—10/19/94

NSNumber, p. 2-102
NSObject, p. 2-105
NSProcessinfo, p. 2-110
NSProxy, p. 2-112
NSRecursiveLock, p. 2-114
NSRunLoop, p. 2-115
NSScanner, p. 2-117
NSSerializer, p. 2-120
NSSet, p. 2-122

NSString, p. 2-125
NSThread, p. 2-136
NSTimer, p. 2-138
NSTimeZone, p. 140
NSTimeZoneDetall, p. 2-143
NSUnarchiver, p. 2-144
NSUserDefaults, p. 2-146
NSValue, p. 152

2-155 Protocols
NSCoding, p. 2-155
NSCopying, p. 2-156
NSLocking, p. 2-157
NSMutableCopying, p. 2-158
NSObjCTypeSerializationCallBack, p. 2-159
NSObject, p. 2-162

2-165 Foundation Kit Functions
Memory Allocation Functions, p. 2-165
Object Allocation Functions, p. 2-167
Error-Handling Functions, p. 2-168
Geometric Functions, p. 2-170
Range Functions, p. 2-173
Hash Table Functions, p. 2-174
Map Table Functions, p. 2-176
Miscellaneous Functions, p. 2-179

2-181 Types and Constants
Exception Handling, p. 2-181
Geometry, p. 2-181
Hash Table, p. 2-182
Map Table, p. 2-183
Notification Queue, p. 2-185
Run Loop, p. 2-185
Search Results, p. 2-185

OpenStep Specification—10/19/94

String, p. 2-186
Threads, p. 2-186

User Defaults, p. 2-187
Miscellaneous, p. 2-188

3-1 Chapter 3: Display PostScript

3-1 Classes
NSDPSContext, p. 3-1
3-6 Protocols

NSDPSContextNotification, p. 3-6
3-7 Display PostScript Operators

3-8 Client Library Functions
PostScript Execution Context Functions, p. 3-8
Communication with the Display PostScript Server, p. 3-8

3-10 Single-Operator Functions
“PS” Prefix Functions, p. 3-10
“DPS” Prefix Functions, p. 3-10

3-11 Types and Constants
Defined Types, p. 3-11
Enumerations, p. 3-13
Symbolic Constants, p. 3-14
Global Variables p. 3-14

OpenStep Specification—10/19/94

Introduction

This document describes the application programming interface (API) of OpenSpEmStep is an operating
system independent, object-oriented application layer, based on NeXT’s advanced object technology. OpenStep
contains these major components:

Application

OpenStep

Device-Dependent
Windowing Extensions

Operating System

Figure 1. Major Components of OpenStep

OpenStep Specification—10/19/94 Intro-1

Application Kit The Application Kit' provides the basic software for writing interactive
applications—applications that use windows, draw on the screen, and respond
to user actions on the keyboard and mouse. The Application Kit contains the
components that define the OpenStep user interface.

Foundation Kit The Foundation Kit provides the fundamental building blocks that
applications use to manage data and resources. It defines facilities for handling
multibyte character sets, object persistency and distribution, and provides an
interface to common operating system facilities.

Display PostScript System The Display PostScriptsystem provides OpenStep with its
device-independent imaging model.

The OpenStep APl is expressed in the Objective C language, an object-oriented extension of ANSI C. The language
itself lies outside of the scope of this specification. For information on Objective BEX&STEP

Object-Oriented Programming and the Objective C Langagddison-Wesley Publishing Co., 1993). Please note

that many of the types used for method argument and return values in the OpenStep specification are defined in the
Objective C language. These include:

BOOL
Class

id

IMP

nil
Protocol
SEL

In addition, the type codes used to encode method argument and return types for archiving and other purposes are
also defined in the Objective C language.

How this Document Is Organized

The three components of OpenStep are described in separate chapters of this document, starting with Chapter 1,
“The Application Kit". Each chapter is organized in the same way, having these standard sections:

Intro-2 OpensStep Specification—10/19/94

Classes

This section lists the API for each class defined in the component. For each class, these subsections may appear:
Inherits From: The inheritance hierarchy for the class. For example:

NSPanel : NSWindow : NSResponder : NSObject

The first class listed (NSPanel, in this example) is the class’s superclass. The
last class listed is generally NSObject, the root of almost all OpenStep
inheritance hierarchies. The classes between show the chain of inheritance
from NSObject to the superclass. (This particular example shows the
inheritance hierarchy for the NSMenu class of the Application Kit.)

Conforms To: The formal protocols that the class conforms to. These include both protocols
the class adopts and those it inherits from other adopting classes. If inherited,
the name of the adopting class in given in parentheses. For example:

NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

(This particular example is from the NSArray class in the Foundation Kit.)
Declared In: The header file that declares the class interface. For example:

Foundation/NSString.h

(This example is from the NSString class.)

Next, the methods the class declares and implements are listed by name and grouped by type. For example, methods
used to draw are listed separately from methods used to handle events. This listing includes all the methods
declared in the class. It also may include a method declared in a protocol the class conforms to, if there is something
extraordinary about the class’s implementation of the method. Each method is accompanied by a brief description
which states what the method does and mentions the arguments and return value, if any.

If a class lets you define another object—a delegate—that can intercede on behalf of instances of the class, the
methods that the delegate can implement are described in a separate section. These are not methods defined in the
class; rather, they're methods that you can define to respond to messages sent from instances of the class. In essence,
this section documents an informal protocol. But because these methods are so closely tied to the behavior of a
particular class, they're documented with the class rather than in the “Protocols” section.

Some class specifications have separate sections with titles such as “Methods Implemented by the Superview”,
“Methods Implemented by Observers”, or “Methods Implemented by the Owner.” These are also informal
protocols. They document methods that can or must be implemented to receive messages on behalf of instances of
the class.

OpenStep Specification—10/19/94 Intro-3

Protocols

The protocols section documents both formal and informal protocols. Formal protocols are those that are declared
using the@protocol compiler directive. They can be formally adopted and implemented by a class and tested by
sending an object@nformsToProtocol: message.

Some formal protocols are adopted and implemented by OpenStep classes. However, many formal protocols are
declared by a kit, but not implemented by it. They list methods that you can implement to respond to kit-generated
messages.

A few formal protocols are implemented by a kit, but not by a class that’s part of the documented API. Rather, the
protocol is implemented by an anonymous object that the kit supplies. The protocol lets you know what messages
you can send to the object.

Like formal protocols, informal protocols declare a list of methods that others are invited to implement. If an
informal protocol is closely associated with one particular class—for example, the list of methods implemented by
the delegate—it's documented in the class description. Informal protocols associated with more than one class, or
not associated with any particular class, are documented with the formal protocols in this section.

Protocol information is organized into many of the same sections as described above for a class specification. But
protocols are not classes and therefore differ somewhat in the kind of information provided. The sections of a
protocol specification are shown in bold in the following:

Adopted By: A list of the OpenStep classes that adopt the protocol. Many protocols declare
methods that applications must implement and so are not adopted by any
OpenStep classes.

Some protocols are implemented by anonymous objects (instances of an
unknown class); the protocol is the only information available about what
messages the object can respond to. Protocols that have an implementation
available through an anonymous object generally don't have to be
reimplemented by other classes.

An informal protocol can’t be formally adopted by a class and it can't formally incorporate another protocol. So its
description begins with information about the category where it's declared:

Category Of: The class that the category belongs to. Informal protocols are typically
declared as categories of the NSObject class. This gives them the widest
possible scope.

All descriptions of protocols, whether formal or informal, list where the protocol is declared:
Declared In: The header file where the protocol is declared.

If the protocol includes enough methods to warrant it, they're divided by type and presented just as the methods of
a class are.

Intro-4 OpensStep Specification—10/19/94

Functions

Related functions are grouped together under a heading that describes the common purpose. Each function, its
arguments, and its return value are briefly described in an accompanying comment.

Types and Constants

Related defined types, enumeration constants, symbolic constants, structures, and global variables are grouped
together under a heading that describes the common purpose. A short description accompanies each group.

OpenStep Specification—10/19/94 Intro-5

Intro-6

1 Application Kit

Introduction

The Application Kit defines Objective C classes, protocols, C functions, constants, and data types that are designed
to be used by virtually every OpenStep application. The principal aim of the Application Kit is to provide the
framework for implementing a graphical, event-driven application.

OpenStep Specification—10/19/94 Introduction: Application Kit 1-1

Classes

The Application Kit contains over sixty classes which inherit directly or indirectly from NSObject, the root class
defined in the Foundation Kit. The following diagram shows the inheritance relationship among these classes. After
the diagram, the specifications for these classes are arranged in alphabetical order.

1-2 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSCell

NSActionCell NSButtonCell NSMenuCell

NSBrowserCell NSFormCell

NSSliderCell
NSTextFieldCell

NSColor

NSColorList
NSCursor
NSDataLink
NSDataLinkManager
NSEvent

NSFont

NSBitmaplmageRep

NSFontManager

NSCachedimageRep

NSObject I-

NSImage

NSImageRep

(O EDe

NSCustomImageRep

NSEPSImageRep

NSButton

NSPasteboard

NSColorwell

NSPopUpButton

NSMatrix

NSPrintinfo

NSPrintOperation

NSResponder

—| NSClipView I
—| NSControl I——| NSScroller I
—| NSScrollView !—| NSSlider !

—| NSSplitView I —| NSTextField I
NSText NSCStringText

NSApplication

NSView

EIEI

NSWindow NSPanel NSColorPanel

NSFontPanel
NSHelpPanel

NSMenu

NSWorkspace

NSPageLayout

NSPrintPanel

NSDatalLinkPanel

NSForm

NSSavePanel

NSOpenPanel

Figure 1-1. Application Kit Classes

OpenStep Specification—10/19/94

{II'III[

Classes: Application Kit

1-3

NSActionCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSActionCell.h

Class Description

An NSActionCell defines an active area inside a control (an instance of NSControl or one of its subclasses). As an
NSControl's active area, an NSActionCell does three things: it usually performs display of text or an icon (the
subclass NSSliderCell is an exception); it provides the NSControl with a target and an action; and it handles mouse
(cursor) tracking by properly highlighting its area and sending action messages to its target based on cursor
movement. The only way to specify the NSControl for a particular NSActionCell is to send the NSActionCell a
drawWithFrame:inView: message, passing the NSControl as the argument forviiesv: keyword of the

method.

NSActionCell implements the target object and action method as defined by its superclass, NSCell. As a user
manipulates an NSControl, NSActionCetfackMouse:inRect:ofView:untilMouseUp: method (inherited from

NSCell) updates its appearance and sends the action message to the target object with the NSControl object as the
only argument.

Usually, the responsibility for an NSControl’'s appearance and behavior is completely given over to a corresponding
NSActionCell. (NSMatrix, and its subclass NSForm, are NSControls that don’t follow this rule.)

A single NSControl may have more than one NSActionCell. To help identify it in this case, every NSActionCell
has an integer tag. Note, however, that no checking is done by the NSActionCell object itself to ensure that the tag
is unique. See the NSMatrix class for an example of a subclass of NSControl that contains multiple NSActionCells.

Many of the methods that define the contents and look of an NSActionCell, sseffr@st: andsetBordered,
are reimplementations of methods inherited from NSCell. They're subclassed to ensure that the NSActionCell is
redisplayed if it's currently in an NSControl.

Configuring an NSActionCell
— (void)setAlignment:(NSTextAlignmentinode Sets the NSActionCell’s text alignmentrtmde

— (void)setBezeledBOOL)flag Adds or removes the NSActionCell's bezel.
— (void)setBordered(BOOL)flag Adds or removes the NSActionCell's border.
— (voidsetEnabled(BOOL)flag Sets whether the NSActionCell reacts to mouse and

keyboard events.

1-4 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (voidsetFloatingPointFormat:(BOOL)autoRange
left: (unsigned inteftDigits
right: (unsigned intjightDigits

— (void)setFont(NSFont *fontObject

— (voidsetimage(NSImage *)mage

Manipulating NSActionCell V alues
— (doublejloubleValue
— (floatfloatValue
— (int)intValue
— (void)setStringValue:(NSString *|String
— (NSString *ytringValue

Displaying

— (voiddrawWithFrame: (NSRectellFrame
inView: (NSView *)controlView

— (NSView *)xcontrolView

Target and Action
— (SEL}ction
— (void)setAction:(SEL)aSelector
— (voidsetTarget:(id)anObject
— (id)target

Assigning a Tag
— (voidsetTag{int)anint

— (int)ttag

OpenStep Specification—10/19/94

Sets the NSActionCell’s floating point format.

Sets the NSActionCell's font fontObject

Sets the NSActionCell’s icon image.

Returns the NSActionCell's contents adauble.
Returns the NSActionCell’s contents affoat.
Returns the NSActionCell’s contents asi@n

Sets the NSActionCell's contents to a copw8tring

Returns the NSActionCell's contents as a string.

Draws the NSActionCell in the rectanglellFrameof
controlViewwhich should normally be an NSControl).

Returns the view (normally an NSControl) in which the
NSActionCell was last drawn.

Returns the NSActionCell's action method.
Sets the NSActionCell’'s action methodaBelector
Sets the NSActionCell’s target objectanObject

Returns the NSActionCell’s target object.

Sets the NSActionCell’'s tag tmint

Returns the NSActionCell’s tag.

Classes: NSActionCell 1-5

NSApplication

Inherits From:

Conforms To:

Declared In:

NSResponder : NSObject

NSCoding (NSResponder)
NSObject (NSObject)

AppKit/NSApplication.h

AppKit/NSColorPanel.h
AppKit/NSDatalLinkPanel.h
AppKit/NSHelpPanel.h
AppKit/NSPagelLayout.h

Class Description

The NSApplication class provides the central framework of your application’s execution. Every application must
have exactly one instance of NSApplication (or of a custom subclass of NSApplication). Your progaar()s
function should create this instance by callinggharedApplication class method. (Alternatively, you could use
alloc andinit, making sure they're called only once.) After creating the NSApplicatiomaig) function should

load your application’s main nib file, and then start the event loop by sending the NSApplicatiomassage.

Here’s an example of a typical OpenStegin() function in its entirety:

void main(int argc, char *argv[]) {
NSApplication *app = [NSApplication sharedApplication];
[NSBundle loadNibNamed:@"myMain" owner:app];
[app run};
}

Creating the NSApplication object connects the program to the window system and the Display PostScript server,
and initializes its PostScript environment. The NSApplication object maintains a list of all the NSWindows that the
application uses, so it can retrieve any of the application’s NSViews.

The NSApplication object’s main task is to receive events from the window system and distribute them to the proper
NSResponders. The NSApplication translates an event into an NSEvent object, then forwards the NSEvent to the
affected NSWindow object. A key-down event that occurs while the Command key is pressed results in a
commandKey: message, and every NSWindow has an opportunity to respond to it. Other keyboard and mouse
events are sent to the NSWindow associated with the event; the NSWindow then distributes these NSEvents to the
objects in its view hierarchy.

In general, it's neater and cleaner to separate the code that embodies your program’s functionality into a number of
custom objects. Usually those custom objects are subclasses of NSObject. Methods defined in your custom objects
can be invoked from a small dispatcher object without being closely tied to the NSApplication object. It's rarely
necessary to create a custom subclass of NSApplication. You will need to do so only if you need to provide your
own special response to messages that are routinely sent to the NSApplication object. To use a custom subclass of
NSApplication, simply substitute it for NSApplication in tmain() function above.

Chapter 1: Application Kit OpenStep Specification—10/19/94

When you create an instance of NSApplication (or of a custom subclass of NSApplication), it gets stored as the
global variable NSApp. Although this global variable isn’t used in the exammgl®() function above, you might

find it convenient to refer to NSApp within the source code for your application’s custom objects. Note that you
can also retrieve the NSApplication object by invokshgredApplication.

The NSApplication class sets up autorelease pools during initialization and during the event loop—that is, within
itsinit (orsharedApplication) andrun methods. Similarly, the methods that the Application Kit adds to NSBundle
employ autorelease pools during the loading of nib files. The autorelease pools aren't accessible outside the scope
of the respective NSApplication and NSBundle methods. This isn’t usually a problem, because a typical OpenStep
application instantiates its objects by loading nib files (and by having the objects from the nib file create other
objects during initialization and during the event loop). However, if you do need to use OpenStep classes within the
main() function itself (other than to invoke the methods just mentioned), you should instantiate an autorelease pool
before using the classes, and then release the pool once you're done. For more information, see the description of
the NSAutoreleasePool class in the Foundation Kit.

The Delegate and Observers

The NSApplication object can be assigned a delegate that responds on behalf of the NSApplication to certain
messages addressed to the NSApplication object. Some of these messages, such as
application:openFile:withType:, ask the delegate to open a file. Another message,
applicationShouldTerminate:, lets the delegate determine whether the application should be allowed to quit.

An NSApplication can also hawbserversObservers receive notifications of changes in the NSApplication, but

they don’t have the unique responsibility that a delegate has. Any instance of a class that implements an observer
method can register to receive the corresponding notification. For example, if a class implements
applicationDidFinishLaunching: and registers to receive the corresponding notification, instances of this class

are given an opportunity to react after the NSApplication has been initialized. (The observer methods are listed later
in this class specification. For information about how to register to receive notifications, see the class specification
for the Foundation Kit's NSNotificationCenter class.)

There can be only one delegate, but there can be many observers. The delegate itself can be an observer—in fact,
in many applications the delegate might be the only observer. Whereas most observers need to explicitly register
with an NSNotificationCenter before they can receive a particular notification message, the delegate need only
implement the method. By simply implementing an observer method, the NSApplication’s delegate is

automatically registered to receive the corresponding notification.

Creating and Initializing the NSApplication

+ (NSApplication *sharedApplication Returns the NSApplication instance, creating it if it doesn’t
yet exist.

OpenStep Specification—10/19/94 Classes: NSApplication 1-7

— (void¥inishLaunching Activates the application, opens any files specified by the
“NSOpen” user default, and unhighlights the
application’s icon in the Workspace Manager. This
method is invoked bgun before it starts the event loop.
When this method begins, it posts the notification
NSApplicationWillFinishLaunchingNotification with
the receiving object to the default notification center.
When it successfully completes, it posts the notification
NSApplicationDidFinishLaunchingNoatification. If you
overridefinishLaunching, the subclass method should
invoke the superclass method.

Changing the Active Application

— (void)activatelgnoringOtherApps: (BOOL)flag Makes this the active applicationfldg is NO, the
application is activated only if no other application is
currently active.

— (void)Ydeactivate Deactivates the application.

— (BOOL)isActive Returns whether this is the active application.

Running the Event Loop
— (void)abortModal Aborts the event loop started hynModalForWindow: .

— (NSModalSessiobeginModalSessionForwindow{NSWindow *theWindow
Sets up a modal session witleWindow

— (void)endModalSessionNSModalSessiosession
Finishes a modal session.

— (BOOL)sRunning Returns whether the main event loop is running.
— (voidyun Starts the main event loop.

— (inthrunModalForWindow: (NSWindow *theWindow
Starts a modal event loop fireWindow

— (intrunModalSession(NSModalSessiomession
Runs a modal session.

1-8 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (voidsendEvent(NSEvent *}heEvent

— (void)stop:(id)sender
— (void)stopModal

— (voidstopModalWithCode:(int)returnCode

Getting, Removing, and Posting Events

— (NSEvent *rurrentEvent

Dispatches events to other objects. When sending the

activate application event, this method posts the
notifications NSApplicationWillBecomeActive and
NSApplicationDidBecomeActive with the receiving
object to the default notification center. When sending
the deactivate application event, it posts the
NSApplicationWillResignActiveNotification and
NSApplicationDidResignActiveNotification
notifications with the receiving object to the default
notification center.

Stops the main event loop.
Stops the modal event loop.

Stops the event loop started toymModalForWindow:
and sets the code thrainModalForWindow: will
return.

Returns the current event.

— (voiddiscardEventsMatchingMask:(unsigned inthask

beforeEvent(NSEvent *JastEvent

Removes from the event queue all events matamniask
that were generated befdestEvent.

— (NSEvent *hextEventMatchingMask:(unsigned inthask

untilDate: (NSDate *gxpiration
inMode: (NSString *mode
dequeue(BOOL)flag;

Returns the next event matchimgsk or nil if
no such event is found before thirationdate. Ifflag
is YES, the event is removed from the queue.ribde
argument names an NSRunLoop mode that determines
what other ports are listened to and what timers may fire
while the NSApplication is waiting for the event.

— (voidyostEvent(NSEvent *geventatStart: (BOOL)flag

Sending Action Messages

— (BOOL)sendAction(SEL)aSelector
to:(id)aTarget
from: (id)sender

— (id)targetForAction: (SEL)aSelector

OpenStep Specification—10/19/94

Addseventto the beginning of the application’s event
queue ifflagis YES, and to the end otherwise.

Sends an action messagai@rgetor up the responder
chain.

Returns the object that receives the action message
aSelector

Classes: NSApplication 1-9

— (BOOL)YryToPerform: (SEL)aSelector Attempts to send a message to the application or the
with: (id)anObject delegate.

Setting the Application’s Icon

— (void)setApplicationlconimage:(NSImage *anlimage
Sets the application’s icon &mlmage.

— (NSImage *applicationlconimage Returns the NSImage used for the application’s icon.

Hiding All Windows

— (voidhide:(id)sender Hides all the application’s windows. When this method
begins, it posts the natification
NSApplicationWillHideNotification with the receiving
object to the default notification center. When it
completes successfully, it posts the naotification
NSApplicationDidHideNatification.

— (BOOL)isHidden Returns YES if windows are hidden.
— (voidunhide:(id)sender Restores hidden windows to the screen.
— (voidlunhideWithoutActivation Restores hidden windows without activating their owner.

When this method begins, it posts the notification
NSApplicationWillUnhideNotification with the
receiving object to the default notification center. When
it completes successfully, it posts the notification
NSApplicationDidUnhideNotification.

Managing Windows
— (NSWindow *keyWindow Returns the key window.
— (NSWindow *mainWindow Returns the main window.

— (NSWindow *makeWindowsPerform:(SEL)aSelector
inOrder: (BOOL)flag Sends th@Selectormessage to the application’s
NSWindows—in front-to-back orderifagis YES,
otherwise in the order of the array that Wiedows
method returns.

— (void)miniaturizeAll: (id)sender Miniaturizes all the receiver’s application windows.

— (void)yreventWindowOrdering Suppresses the usual window ordering in handling the most
recent mouse-down event.

1-10 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setWindowsNeedUpdatgBOOL)flag

— (voidupdateWindows

— (NSArray *Wwindows

Sets whether the application’s windows need updating
when the application has finished processing the current
event. This method is especially useful for making sure
menus are updated to reflect changes not initiated by
user actions.

Sends anpdatemessage to on-screen NSWindows. When
this method begins, it sends the notification
NSApplicationWillUpdateNotification with the
receiving object to the default notification center. When
it successfully completes, it sends the notification
NSApplicationDidUpdateNotification.

Returns an array of the application’s NSWindows.

— (NSWindow *WwindowWithwWindowNumber: (int)windowNum

Showing Standard Panels
— (void)orderFrontColorPanel: (id)sender

— (voidrderFrontDataLinkPanel: (id)sender

— (void)orderFrontHelpPanel:(id)sender
— (voidyunPageLayout:(id)sender

Getting the Main Menu
— (NSMenu *mainMenu
— (voidsetMainMenu:(NSMenu *aMenu

Managing the Windows Menu

— (voidjaddWindowsltem:(id)awindow
title: (NSString *aString
filename(BOOL)isFilename

— (voidjyarrangelnFront; (id)sender

— (voidxhangeWindowsltem{(id)aWindow
title: (NSString *aString
filename:(BOOL)isFilename

—(void)removeWindowsltem:(id)aWwindow

OpenStep Specification—10/19/94

Returns the NSWindow object corresponding to
windowNum

Brings up the color panel.

Shows the shared instance of the data link panel, creating it
first if necessary.

Shows the application’s help panel or the default one.

Runs the application’s page layout panel.

Returns thed of the application’s main menu.

MakesaMenuthe application’s main menu.

Adds a Windows menu item fawWindow

Orders all registered NSWindows to the front.

Changes the Windows menu item &Window

Removes the Windows menu item &#Vindow.

Classes: NSApplication 1-11

— (voidsetWindowsMenu{(id)aMenu Sets the Windows menu.
— (voidupdateWindowsltem:(id)awindow Updates the Windows menu item f/indow

— (NSMenu *WwindowsMenu Returns the Windows menu.

Managing the Services menu

— (voidyegisterServicesMenuSendTypegNSArray *)sendTypes

returnTypes: (NSArray *)returnTypes Registers pasteboard types the application can send and
receive.
— (NSMenu *servicesMenu Returns the Services menu.
— (void)setServicesMenuNSMenu *aMenu Sets the Services menu.

— (id)validRequestorForSendType({NSString *sendType
returnType: (NSString *yeturnType Indicates whether the NSApplication can send and receive
the specified types.

Getting the Display PostScript Context
— (NSDPSContext tontext Returns the NSApplication’s Display PostScript context.

Reporting an Exception

— (void¥eportException: (NSException *anException
Logs the given exception by calliddSLog().

Terminating the Application

— (voidterminate:(id)sender Frees the NSApplication object and exits the application.

Assigning a Delegate
— (id)delegate Returns the NSApplication’s delegate.

— (void)setDelegate(id)anObject MakesanObjectthe NSApplication’s delegate.

Implemented by the Delegate

— (BOOL)application:(id)sender Sent directly bysendetto the delegate. Opens the specified
openFileWithoutUI: (NSString *filename file to run without a user interface.Work with the file
will be under programmatic control séndeyrather
than under keyboard control of the user. Returns YES or
NO to indicate whether the file was successfully opened

1-12 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (BOOL)application: (NSApplication *application Sent directly byapplicationto the delegate. Like
openFile(NSString *filename application:openFileWithoutUI: , but brings up the
user interface of the file’s application.

— (BOOL)application: (NSApplication *application Sent directly byapplicationto the delegate. Like
openTempFile{NSString *ilename application:openFile:, but a file opened through this
method is assumed to be temporary; it's the
application's responsibility to remove the file at the
appropriate time.

— (voidyapplicationDidBecomeActive(NSNatification *)aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationDidBecomeActiveNotification. If the
delegate implements this method, it's automatically
registered to receive the notification.

— (void)applicationDidFinishLaunching: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationDidFinishLaunchingNotification. If the
delegate implements this method, it's automatically
registered to receive the notification.

— (void)applicationDidHide: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationDidHideNotification. If the delegate
implements this method, it's automatically registered to
receive the notification.

— (voidlapplicationDidResignActive:(NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationDidResignActiveNotification. If the
delegate implements this method, it's automatically
registered to receive the notification.

— (void)applicationDidUnhide: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationDidUnhideNotification. If the delegate
implements this method, it's automatically registered to
receive the notification.

OpenStep Specification—10/19/94 Classes: NSApplication 1-13

— (void)applicationDidUpdate:(NSNotification *\aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationDidUpdateNotification. If the delegate
implements this method, it's automatically registered to
receive the notification.

— (BOOL)applicationOpenUntitledFile:(NSApplication *pplication
Sent directly byapplicationto the delegate. Like
application:openFile:, but opens a new, untitled
document.

— (BOOL)applicationShouldTerminate:(id)sender Sent directly bysenderto the delegate. Returns YES if the
application should terminate.

— (void)applicationWillIBecomeActive:(NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationWillBecomeActiveNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (voidjapplicationWillFinishLaunching: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationWillFinishLaunchingNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (voidyapplicationWillHide: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationWillHideNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (void)applicationWillResignActive: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationWillResignActiveNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (voidjapplicationWillunhide: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationWillUnhideNotification. If the delegate
implements this method, it's automatically registered to
receive the notification.

1-14 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)applicationWillUpdate: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSApplicationWillUpdateNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

OpenStep Specification—10/19/94 Classes: NSApplication 1-15

NSBitmaplmageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSBitmaplmageRep.h

Class Description

An NSBitmaplmageRep is an object that can render an image from bitmap data. The data can be in Tag Image File
Format (TIFF), or it can be raw image data. If it's raw data, the object must be informed about the structure of the
image—its size, the number of color components, the number of bits per sample, and so on—when it’s first
initialized. If it's TIFF data, the object can get this information from the various TIFF fields included with the data.

Although NSBitmaplmageReps are often used indirectly, through instances of the NSIimage class, they can also be
used directly—for example to manipulate the bits of an image as you might need to do in a paint program.

Setting Up an NSBitmaplmageRep

A new NSBitmaplmageRep is passed bitmap data for an image when it's first initialized. An NSBitmaplmageRep
can also be created from bitmap data that’s read from a specified rectangle of a focused NSView.

Although the NSBitmaplmageRep class inherits NSImageRep methods that set image attributes, these methods
shouldn't be used. Instead, you should either allow the object to find out about the image from the TIFF fields or
use methods defined in this class to supply this information when the object is initialized.

1-16 Chapter 1: Application Kit OpensStep Specification—10/19/94

TIFF Compression

TIFF data can be read and rendered after it has been compressed using any one of the four schemes briefly described
below:

LZW Compresses and decompresses without information loss, achieving
compression ratios up to 5:1. It may be somewhat slower to compress and
decompress than the PackBits scheme.

PackBits Compresses and decompresses without information loss, but may not achieve
the same compression ratios as LZW.

JPEG Compresses and decompresses with some information loss, but can achieve
compression ratios anywhere from 10:1 to 100:1. The ratio is determined by a
user-settable factor ranging from 1.0 to 255.0, with higher factors yielding
greater compression. More information is lost with greater compression, but
15:1 compression is safe for publication quality. Some images can be
compressed even more. JPEG compression can be used only for images that
specify at least 4 bits per sample.

CCITTFAX Compresses and decompresses 1 bit grayscale images using international fax
compression standards CCITT3 and CCITT4.

An NSBitmaplmageRep can also produce compressed TIFF data for its image using any of these schemes.

Allocating and Initializing a New NSBitmaplmageRep Object

+ (id)imageRepWithData:(NSData *}iffData Creates and returns an initialized NSBitmaplmageRep
corresponding to the first imagetifiData.

+ (NSArray *imageRepsWithData(NSData *}iffData
Creates and returns initialized NSBitmaplmageRep objects
for all the images itiffData.

— (id)initwithData: (NSData *}iffData Initializes a newly allocated NSBitmaplmageRep from the
first TIFF header and image data foundifiData.

— (id)initWithFocusedViewRect:(NSRectject Initializes the new object using data read from the image
contained in the rectangtect

OpenStep Specification—10/19/94 Classes: NSBitmaplmageRepl-17

— (id)initwithBitmapDataPlanes: (unsigned char *lanes

pixelsWide:(int)width Initializes the new object from raw bitmap data in the
pixelsHigh:(int)height planesiata buffers. As the data is raw, the other
bitsPerSample(int)bps arguments specify its attributes.
samplesPerPixelint)spp

hasAlpha:(BOOL)alpha

isPlanar:(BOOL)config

colorSpaceNamgNSString *colorSpaceName
bytesPerRowf(int)rowBytes
bitsPerPixel:(int)pixelBits

Getting Information about the Image

— (intbitsPerPixel Returns how many bits are needed to specify one pixel.

— (int)samplesPerPixel Returns the number of samples (components) in the data.
— (BOOL)sPlanar Returns YES if in planar configuration, NO if meshed.

— (inthhumberOfPlanes Returns the number of data planes.

— (int)bytesPerPlane Returns the number of bytes in each data plane.

— (int)oytesPerRow Returns the number of bytes in a scan line.

Getting Image Data

— (unsigned char bitmapData Returns a pointer to the bitmap data. If the data is planar,
returns a pointer to the first plane.

— (void)getBitmapDataPlanesfunsigned char *gata
Provides pointers to each plane of bitmap data.

Producing a TIFF Representation of the Image

+ (NSData *J'IFFRepresentationOflmageRepsinArray:(NSArray *)anArray
Returns a TIFF representation of the images in the
specified NSArray, using the compression that’s
returned bygetCompression:factor:(if applicable).

+ (NSData *JIFFRepresentationOfImageRepsinArray:(NSArray *JanArray
usingCompression{NSTIFFCompressiogpmpressionType
factor: (float)factor Returns a TIFF representation of the images in the
specified NSArray, which are compressed using
compressionTypandfactor. If the specified
compression isn’t applicable, no compression is used.

1-18 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (NSData *YIFFRepresentation Returns a TIFF representation of the image, using the
compression that’s returned by
getCompression:factor: (if applicable).

— (NSData *TIFFRepresentationUsingCompressioniNSTIFFCompressiogpmpressionType
factor:(float)factor Returns a compressed TIFF representation of the image
having the specified compression type and compression
factor. If the specified compression isn't applicable, no
compression is used. Raises NSTIFFException if an
atempt is made to create a TIFF representation using
OpenStep custom color space bitmaps.

Setting and Checking Compression Types

+ (void)getTIFFCompressionTypes{const NSTIFFCompression #i$t
count:(int *)numTypes Returns all available compression types.

+ (NSString *JocalizedNameForTIFFCompressionType{NSTIFFCompressiogpmpression
Returns the localized name for the compression type.

— (BOOL)anBeCompressedUsingNSTIFFCompressiogpmpression
Returns YES if the image can be compressed using the
specified type of compression.

— (void)getCompression{NSTIFFCompression tompression
factor: (float *)factor Returns, in its arguments, the compression type and
compression factor.

— (void)setCompression(NSTIFFCompressiogpmpression
factor: (float)factor Sets the compression type and compression factor.

OpenStep Specification—10/19/94 Classes: NSBitmaplmageRepl-19

NSBox

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSBox.h

Class Description

An NSBox object is a simple NSView that can do two things: It can draw a border around itself and it can title itself.
You can use an NSBox to group, visually, some number of other NSViews. These other NSViews are added to the
NSBox through the typical subview-adding methods, suaddSubview: andreplaceSubview:with:.

An NSBox contains aontent areaa rectangle set within the NSBox’s frame in which the NSBox’s subviews are
displayed. The size and location of the content area depends on the NSBox’s border type, title location, the size of
the font used to draw the title, and an additional measure that you can set thraeg timéentViewMargins:

method. When you create an NSBox, an instance of NSView is created and added (as a subview of the NSBox
object) to fill the NSBox’s content area. If you replacedbistent viewvith an NSView of your own, your NSView

will be resized to fit the content area. Similarly, as you resize an NSBox its content view is automatically resized
to fill the content area.

The NSViews that you add as subviews to an NSBox are actually added to the NSBox's content view—NSView'’s
subview-adding methods are redefined by NSBox to ensure that a subview is correctly placed in the view hierarchy.
However, you should note that thebviewsmethodisn't redefined: It returns an NSArray containing a single

object, the NSBox’s content view.

Getting and Modifying the Border and Title

— (NSRecthorderRect Returns the rectangle in which the border is drawn.
— (NSBorderTypd)orderType Returns the box’s border type.

— (void)setBorderType:(NSBorderTypeaType Sets the box’s border wlype

— (void)setTitle:(NSString *)aString Sets the box’s title taString

— (void)setTitleFont:(NSFont *fontOb)j Sets the NSFont of the title tontObj

— (void)setTitlePosition:(NSTitlePositionaPosition Sets the position of the title &dPosition

— (NSString *jitle Returns the title of the box.
(g
— (id)titleCell Returns the Cell used to draw the title.
(
— (NSFont *jitleFont Returns the NSFont used to draw the title.

1-20 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (NSTitlePositionijtlePosition Returns the position of the title.

— (NSRectijtleRect Returns the rectangle in which the title is drawn.

Setting and Placing the Content View

— (id)contentView Returns the content view.
— (NSSizegontentViewMargins Gets the distances between the border and the content view.
— (void)setContentView(NSView *)aView Replaces the NSBox's content view wikiew

— (voidsetContentViewMargins(NSSizepffsetSize Sets the distances between the border and the content view
to the horizontal and vertical amountfifsetSize

Resizing the Box

— (voidsetFrameFromContentFrame(NSRectfontentFrame
Resizes the box to accommodatatentFrame

— (void)sizeToFit Resizes the box to exactly enclose its subviews.

OpenStep Specification—10/19/94 Classes: NSBox 1-21

NSBrowser

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSBrowser.h

Class Description

NSBrowser provides a user interface for displaying and selecting items from a list of data, or from hierarchically
organized lists of data such as directory paths. When working with a hierarchy of data, the levels are displayed in
columns, which are numbered from left to right, beginning with 0. Each column consists of an NSScrollView
containing an NSMatrix filled with NSBrowserCells. NSBrowser relies on a delegate to provide the data in its
NSBrowserCells. See the NSBrowserCell class description for more on its implementation.

Browser Selection

An entry in an NSBrowser’s column can be either a branch node (such as a directory) or a leaf node (such as a file).
When the user selects a single branch node entry in a column, the NSBrowser sendsaitisiIfdhienn message,

which messages its delegate to load the next column. The user’s selection can be represented as a character string;
if the selection is hierarchical (for example, a filename within a directory), each component of the path to the
selected node is separated by “/”. To use some other character as the delimitesatRatteSeparator:

An NSBrowser can be set to allow selection of multiple entries in a column, or to limit selection to a single entry.
When set for multiple selection, it can also be set to limit multiple selection to leaf nodes only, or to allow selection
of both types of nodes together.

As a subclass of NSControl, NSBrowser has a target object and action message. Each time the user selects one or
more entries in a column, the action message is sent to the target. NSBrowser also adds an action to be sent when
the user double-clicks on an entry, which allows the user to select items without any action being taken, and then
double-click to invoke some useful action such as opening a file.

User Interface Features

The user interface features of an NSBrowser can be changed in a number of ways. The NSBrowser may or may not
have a horizontal scroller. (The NSBrowser’s columns, by contrast, always have vertical scrollers—although a
scroller’s buttons and knob might be invisible if the column doesn’t contain many entries.) You generally shouldn’t
create an NSBrowser without a horizontal scroller; if you do, you must make sure the bounds rectangle of the
NSBrowser is wide enough that all the columns can be displayed. An NSBrowser’s columns may be bordered and
titted, bordered and untitled, or unbordered and untitled. A column'’s title may be taken from the selected entry in
the column to its left, or may be provided explicitly by the NSBrowser or its delegate.

1-22 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSBrowser’s Delegate

NSBrowser requires a delegate to provide it with data to display. The delegate is responsible for providing the data
and for setting each item as a branch or leaf node, enabled or disabled. It can also receive notification of events like
scrolling and requests for validation of columns that may have changed.

You can implement one of two delegate types: active or passive. An active delegate creates a column’s rows (that
is, the NSBrowserCells) itself, while a passive one leaves that job to the NSBrowser. Normally, passive delegates
are preferable, because they're easier to implement. An active delegate must implement
browser:createRowsForColumn:inMatrix: to create the rows of the specified column. A passive delegate, on the
other hand, must implemebtowser:numberOfRowsInColumn: to let the NSBrowser know how many rows to
create. These two methods are mutually exclusive; you can implement one or the other, but not both. (The
NSBrowser ascertains what type of delegate it has by which method the delegate responds to.)

Both types of delegate implemédnbwser:willDisplayCell:atRow:column: to set up state (such as the cell's

string value and whether the cell is a leaf or a branch) before an individual cell is displayed. (This delegate method
doesn’t need to invoke NSBrowserCefiistLoaded: method, because the NSBrowser can determine that state by
itself.) An active delegate can instead set all the cells’ state at the time the cells are created, in which case it doesn't
need to implemertirowser:willDisplayCell:atRow:column: . However, a passive delegate must always

implement this method.

Setting the Delegate
— (id)delegate Returns the NSBrowser’s delegate.

— (voidsetDelegategiid)anObject Sets the NSBrowser’s delegateattObject Raises
NSBrowserlllegalDelegateException if the delegate
specified byanObjectdoesn’t respond to
browser:willDisplayCell:atRow:column: and either
of the method$érowser:numberOfRowsInColumn:
or browser:createRowsForColumn:inMatrix:

Target and Action

— (SELYoubleAction Returns the NSBrowser’s double-click action method.

— (BOOL)sendAction Sends the action message to the target. Returns YES upon
success, NO if no responder for the message could be
found.

— (void)setDoubleAction(SEL)aSelector Sets the NSBrowser’s double-click actiorafeelector

Setting Component Classes

+ (ClassgellClass Returns the NSBrowserCell class (regardless of whether a
setCellClass:message has been sent to a particular
instance).

OpenStep Specification—10/19/94 Classes: NSBrowser 1-23

— (id)cellPrototype

— (ClasshnatrixClass

— (void)setCellClass(Classtlassld

— (void)setCellPrototype(NSCell *)aCell

— (voidsetMatrixClass:(Classtlassld

Setting NSBrowser Behavior

— (BOOL)YeusesColumns

— (voidsetReusesColumngBOOL)flag

Returns the NSBrowser’s prototype NSCell.

Returns the class of NSMatrix used in the NSBrowser’s
columns.

Sets the class of NSCell used in the columns of the
NSBrowser.

Sets the NSCell instance copied to display items in the
columns of NSBrowser.

Sets the class of NSMatrix used in the NSBrowser’s
columns.

Returns YES if NSMatrix objects aren’t freed when their
columns are unloaded.

If flagis YES, prevents NSMatrix objects from being freed
when their columns are unloaded, so they can be reused.

— (void)setTakesTitleFromPreviousColumn(BOOL)flag

— (BOOL)YakesTitleFromPreviousColumn

Allowing Different Types of Selection

— (BOOLJllowsBranchSelection

— (BOOLallowsEmptySelection
— (BOOLJllowsMultipleSelection
— (void)setAllowsBranchSelection(BOOL)flag

— (void)setAllowsEmptySelection(BOOL)flag
— (voidsetAllowsMultipleSelection(BOOL)flag

Setting Arrow Key Behavior

— (BOOL)acceptsArrowKeys

1-24 Chapter 1: Application Kit

Sets whether the title of a column is set to the string value
of the selected NSCell in the previous column.

Returns YES if the title of a column is set to the string value
of the selected NSCell in the previous column.

Returns whether the user can select branch items when
multiple selection is enabled.

Returns whether there can be nothing selected.
Returns whether the user can select multiple items.

Sets whether the user can select branch items when
multiple selection is enabled.

Sets whether there can be nothing selected.

Sets whether the user can select multiple items.

Returns YES if the arrow keys are enabled.

OpenStep Specification—10/19/94

— (BOOL)sendsActionOnArrowKeys Returns NO if pressing an arrow key only scrolls the
browser, YES if it also sends the action message
specified bysetAction..

— (void)setAcceptsArrowKeys(BOOL)flag Enables or disables the arrow keys.

— (void)setSendsActionOnArrowKeys(BOOL)flag Sets whether pressing an arrow key will cause the action
message to be sent (in addition to causing scrolling).

Showing a Horizontal Scroller

— (void)setHasHorizontalScroller(BOOL)flag Sets whether an NSScroller is used to scroll horizontally.
— (BOOL)hasHoarizontalScroller Returns whether an NSScroller is used to scroll
horizontally.

Setting the NSBrowser’s Appearance

— (int)maxVisibleColumns Returns the maximum number of visible columns.
— (intyminColumnWidth Returns the minimum column width.
— (BOOL)separatesColumns Returns whether columns are separated by bezeled borders.

— (void)setMaxVisibleColumns{(int)columnCount Sets the maximum number of columns displayed.
— (voidsetMinColumnWidth: (int)columnWidth Sets the minimum column width.

— (void)setSeparatesColumngBOOL)flag Sets whether to separate columns with bezeled borders.

Manipulating Columns

— (voidyaddColumn Adds a column to the right of the last column.

— (int)columnOfMatrix: (NSMatrix *)matrix Returns the column number in whigtatrix is located.

— (voiddisplayAllColumns Updates the NSBrowser to display all loaded columns.

— (void)isplayColumn:(int)column Updates the NSBrowser to display the column with the
given index.

— (int)firstVisibleColumn Returns the index of the first visible column.

— (BOOL)sLoaded Returns whether column zero is loaded.

— (int)lastColumn Returns the index of the last column loaded.

— (int)lastVisibleColumn Returns the index of the last visible column.

— (void)oadColumnZero Loads column zero; unloads previously loaded columns.

OpenStep Specification—10/19/94 Classes: NSBrowser 1-25

— (intjnumberOfVisibleColumns

— (voidyeloadColumn:(int)column
— (void)selectAll:(id)sender

— (int)selectedColumn

— (void)setLastColumn(int)column

— (void)validateVisibleColumns

Manipulating Column Titles

— (voiddrawTitle: (NSString *Yitle
inRect:(NSRectaRect
ofColumn:(int)column

— (BOOL)isTitled
— (void)setTitled:(BOOL)flag

— (void)setTitle:(NSString *aString
ofColumn:(int)column

— (NSRectjtleFrameOfColumn: (int)column

— (float}itleHeight
— (NSString *jitleOfColumn: (int)column

Scrolling an NSBrowser
— (void)scrollColumnsLeftBy: (int)shiftAmount
— (void)scrollColumnsRightBy:(int)shiftAmount
— (void)scrollColumnToVisible:(int)column
— (void)scrollViaScroller: (NSScroller *sender

— (voidupdateScroller

Event Handling
— (void)oClick: (id)sender
— (void)doDoubleClick:(id)sender

1-26 Chapter 1: Application Kit

Returns the number of columns visible.

Reloadscolumnif it is loaded; sets it as the last column.
Selects all NSCells in the last column of the NSBrowser.
Returns the index of the last column with a selected item.
Sets the last column twlumn

Invokes delegate methdxlowser:isColumnValid: for
visible columns.

Draws the title for the column at inderlumn

Returns whether columns display titles.
Sets whether columns display titles.

Sets the title of the column at indeslumnto aString

Returns the bounds of the title frame for the column at
indexcolumn

Returns the height of column titles.

Returns the title displayed for the column at indelkumn

Scrolls columns left bghiftAmountolumns.

Scrolls columns right bghiftAmountolumns.

Scrolls to make the column at indesilumnvisible.
Scrolls columns left or right based on an NSScroller.

Updates the horizontal scroller to reflect column positions.

Responds to mouse clicks in a column of the NSBrowser.

Responds to double-clicks in a column of the NSBrowser.

OpenStep Specification—10/19/94

Getting Matrices and Cells

— (id)loadedCellAtRow:(int)row
column:(int)column

— (NSMatrix *)matrixInColumn: (int)column
— (id)selectedCell
— (id)selectedCellinColumn{int)column

— (NSArray *selectedCells

Getting Column Frames

— (NSRectirameOfColumn: (int)column

— (NSRectirameOflnsideOfColumn: (int)column

Manipulating Paths
— (NSString *path
— (NSString *pathSeparator
— (NSString *pathToColumn:(int)column

— (BOOL)setPath(NSString *path
— (voidsetPathSeparator(NSString *aString

Arranging an NSBrowser’'s Components

— (voidYile

Methods Implemented by the Delegate

— (void)browser:(NSBrowser *sender
createRowsForColumn(int)column
inMatrix: (NSMatrix *)matrix

OpenStep Specification—10/19/94

Loads if necessary and returns the NSCeatbatin
column

Returns the matrix located @olumn
Returns the last (rightmost and lowest) selected NSCell.
Returns the last (lowest) NSCell that's selectecbinmn

Returns all the rightmost selected NSCells.

Returns the rectangle containing the column at index
column

Returns the rectangle containing the column at index
column not including borders.

Returns the browser’s current path.
Returns the path separator. The default is “/".

Returns a string representing the path from the first column
to the column at indegolumn

Parsegpathand selects corresponding items in columns.

Sets the path separatora$tring

Adjusts the various subviews of NSBrowser—scrollers,
columns, titles, and so on—without redrawing. Your
code shouldn’t send this message. It's invoked any time
the appearance of the NSBrowser changes.

Creates a row imatrixfor each row of data to be displayed
in columnof the browser. Either this method or
browser:numberOfRowsInColumn: must be
implemented, but not both (or an
NSBrowserlllegalDelegateException will be raised).

Classes: NSBrowser 1-27

— (BOOL)Yrowser:(NSBrowser *sender

isColumnValid: (int)column Returns whether the contents of the specified column are
valid.
— (int)orowser:(NSBrowser *sender Returns the number of rows of data in the column at index
numberOfRowsInColumn:(int)column columnEither this method or

browser:createRowsForColumn:inMatrix: must be
implemented, but not both.

— (BOOL)Yrowser:(NSBrowser *sender Asks the delegate to select the NSCell with title in
selectCell(NSString *Yitle the column at indegolumn
inColumn: (int)column

— (NSString *prowser:(NSBrowser *sender Queries the delegate for the title to display above the
titleOfColumn: (int)column column at indexcolumn

— (void)orowser:(NSBrowser *sender Notifies the delegate when the NSBrowser will display
willDisplayCell: (id)cell the specified cell. The delegate should set any state
atRow:(int)row necessary for correct display of the cell.

column:(int)column
— (voidrowserDidScroll:(NSBrowser *sender Notifies the delegate when the NSBrowser has scrolled.

— (void)orowserWillScroll: (NSBrowser *sender Notifies the delegate when the NSBrowser will scroll.

1-28 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSBrowsercCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSBrowserCell.h

Class Description

NSBrowserCell is the subclass of NSCell used by default to display data in the columns of an NSBrowser. (Each
column contains an NSMatrix filled with NSBrowserCells.) Many of NSBrowserCell's methods are designed to
interact with NSBrowser and NSBrowser’s delegate. The delegate implements methods for loading the NSCells in
NSBrowser by setting their values and status. If your code needs access to a specific NSBrowserCell, you can use
the NSBrowser methddadedCellAtRow:column..

You may find it useful to create a subclass of NSBrowserCell to alter its behavior and to enable it to work with and
display the type of data you wish to represent. Use NSBrovgstCelIClass:or setCellPrototype: methods to
have it use your subclass.

See the NSBrowser class specification for more details. In particular, the class description and the “Methods
Implemented by the Delegate” section describe how the NSBrowser’s delegate interacts with both NSBrowser and
NSBrowserCells.

Accessing Graphic Attributes

+ (NSImage *pranchimage Returns the default NSImage for branch NSBrowserCells.

+ (NSImage *highlightedBranchimage Returns the default NSImage for branch NSBrowserCells
that are highlighted.

— (NSImage *alternatelmage Returns this NSBrowserCell's image for the highlighted
state.

— (void)setAlternatelmage(NSImage *animage Sets this NSBrowserCell's image for the highlighted state.

Placing in the Browser Hierarchy
— (BOOL)sLeaf Returns whether the NSBrowserCell is a leaf or a branch.

— (void)setLeaf(BOOL)flag Sets whether the NSBrowserCell is a leaf or a branch.

OpenStep Specification—10/19/94 Classes: NSBrowserCell1-29

Determining Loaded Status

— (BOOL)sLoaded

— (void)setLoaded(BOOL)flag

Setting State
— (voidyeset

— (void)set

1-30 Chapter 1: Application Kit

Returns YES if all the NSBrowserCell's state has been set
and the cell is ready to display.

Sets whether all the NSBrowserCell’s state has been set and
the cell is ready to display.

Unhighlights the NSBrowserCell and sets its state to O.

Highlights the NSBrowserCell and sets its state to 1.

OpenStep Specification—10/19/94

NSBundle Additions

Inherits From: NSObject

Declared In: AppKit/NSImage.h
AppKit/NSNibLoading.h

Class Description

The Application Kit adds these methods to the Foundation Kit's NSBundle class. These methods become part of
the class for all applications that use the Application Kit, but not for applications that don’t.

Getting the Location of Images in the File System

— (NSString *pathForimageResource(NSString *name
Returns the absolute pathname of the file containing the
specified image resource. (Thameof the resource is
simply the filename without the path of its bundle
directory; the filename extension need not be included.)

Loading an Interface Builder File

+ (BOOL)loadNibFile:(NSString *fileName Unarchives the contents of the nib file whose absolute path
externalNameTable(NSDictionary *)context is fleName Objects from the nib file are allocated in
withZone:(NSZone *yone the specified zone of memory. Ttentextargument is

a name table—a dictionary whose keys are names like
“NSOwner” and whose values are existing objects that
can be referenced by the newly unarchived objects.
Returns YES upon success. (A nib file is a object
archive whose file format is currently implementation
specific. A public specification of this file format will be
available at a later date.)

+ (BOOL)loadNibNamed:(NSString *aNibName Similar toloadNibFile:externalNameTable:withZone;,
owner:(id)owner but the name table’s only element is the specified owner

(stored with the key “NSOwner”). Objects from the nib
file are allocated iowners zone. If there’s a bundle for
owners class, this method looks in that bundle for the
nib file namedaNibName(this argument need not
include the “.nib” extension); otherwise, it looks in the
main bundle. (A nib file is a object archive whose file
format is currently implementation specific. A public
specification of this file format will be available at a
later date.)

OpenStep Specification—10/19/94 Classes: NSBundle Additions1-31

NSButton

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSButton.h

Class Description

NSButton is a subclass of NSControl that intercepts mouse-down events and sends an action message to a target
object when it's clicked or pressed. By virtue of its NSButtonCell, NSButton is a two-state NSControl—it’s either
“off” or “on"—and it displays its state depending on the configuration of the NSButtonCell. NSButton acquires
other attributes of NSButtonCell. The state is used as the value, so NSControl methsstinlikalue: actually

set the state (the methogktState:andstate are provided as a more conceptually accurate way of setting and

getting the state). The NSButton can send its action continuously and display highlighting in several different ways.
What's more, an NSButton can have a key equivalent that's eligible for triggering whenever the NSButton’s
NSPanel or NSWindow is the key window.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCell object. However,
while NSMatrix requires you to access the NSButtonCells directly, most of NSButton’s methods are “covers” for
identically declared methods in NSButtonCell. (In other words, the implementation of the NSButton method
invokes the corresponding NSButtonCell method for you, allowing you to be unconcerned with the NSButtonCell's
existence.) The only NSButtonCell methods that don’t have covers relate to the font used to display the key
equivalent, and to specific methods for highlighting or showing the NSButton’s state (these last are usually set
together with NSButton’setType: method).

Creating a Subclass of NSButton

Override the designated initializer (NSVievirstWithFrame: method) if you create a subclass of NSButton that
performs its own initialization. If you want to use a custom NSButtonCell subclass with your subclass of NSButton,
you have to override treetCellClass:method, as described in “Creating New NSControls” in the NSControl class
specification.

See the NSButtonCell class specification for more on NSButton’s behavior.

Initializing the NSButton Factory
+ (ClassgellClass Returns the subclass of NSButtonCell used by NSButton
+ (void)setCellClass(Classtlassld Sets the subclass of NSButtonCell used by NSButton.

1-32 Chapter 1: Application Kit OpensStep Specification—10/19/94

Setting the Button T ype

— (voidsetType{int)aType

Setting the State
— (void)setState(int)value

— (int)state

Setting the Repeat Inter val

— (void)getPeriodicDelay(float *)delay
interval: (float *)interval

— (void)setPeriodicDelay(float)delay
interval: (float)interval

Setting the Titles
— (NSString *plternateTitle
— (voidsetAlternateTitle: (NSString *aString
— (void)setTitle:(NSString *)aString
— (NSString *jitle

Setting the Images
— (NSImage *alternatelmage
— (NSImage *Image
— (NSCellimagePositioithagePosition

— (void)setAlternatelmage(NSImage *animage

— (voidsetimage(NSImage *animage

Sets how the NSButton highlights and shows its state.

Sets the NSButton’s statevalue(0 or 1).

Returns the NSButton’s current state (0 or 1).

Gets repeat parameters for continuous buttons.

Sets repeat parameters for continuous buttons.

Returns the button’s alternate title.
MakesaStringthe button’s alternate title.
MakesaStringthe button’s title.

Returns the button’s title.

Returns the button’s alternate image.
Returns the button’s image.

Returns the position of the button’s image.
Makesanimagethe alternate image.

Makesanimagethe button’s icon.

— (void)setimagePosition{NSCellimagePositiomPosition

OpenStep Specification—10/19/94

Sets the position of the button’s imageRpsition

Classes: NSButton 1-33

Modifying Graphic Attributes

— (BOOL)isBordered Returns whether the button has a bezeled border.
— (BOOL)isTransparent Returns whether the button is transparent.
— (void)setBordered(BOOL)flag Sets whether the button has a bezeled border.
— (void)setTransparent(BOOL)flag Sets whether the button is transparent.
Displaying
— (void)ighlight: (BOOL)flag Highlights (or unhighlights) the button accordinglam.

Setting the Key Equivalent

— (NSString *keyEquivalent Returns the button’s key equivalent.

— (unsigned inReyEquivalentModifierMask Returns the mask indicating the possible modifier keys for
button’s key equivalent.

— (void)setKeyEquivalent(NSString *aKeyEquivalent
MakesaKeyEquivalenthe button’s key equivalent.

— (voidsetKeyEquivalentModifierMask: (unsigned inthask
Sets the mask that determines the possible modifier keys
for button’s key equivalent.

Handling Events and Action Messages
— (voidyerformClick: (id)sender Simulates the user’s clicking the button.

— (BOOL)YerformKeyEquivalent: (NSEvent *anEvent
Simulates a mouse click, if the keyanEventis right.

1-34 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSButtonCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSButtonCell.h

Class Description

NSButtonCell is a subclass of NSActionCell used to implement the user interfaces of push buttons, switches, and
radio buttons. It can also be used for any other region of a view that’s designed to send a message to a target when
clicked. The NSButton subclass of NSControl uses a single NSButtonCell. To create groups of switches or radio
buttons, use an NSMatrix holding a set of NSButtonCells.

An NSButtonCell is a two-state cell; it's either “off” or “on,” and can be configured to display the two states
differently, with a separate title and/or image for either state. The two states are more often referred to as “normal”
and “alternate.” An NSButtonCell's state is also used as its value, so NSCell methods that set the value
(setIntValue: and so on) actually set the NSButtonCell’s state to “on” if the value provided is non-zero (or non-null
for strings), and to “off” if the value is zero or null. Similarly, methods that retrieve the value return 1 for the “on”
or alternate state (an empty string in the castrisigValue), or 0 or NULL for the “off” or normal state. You can

also use NSCell'setState:andstate methods to set or retrieve the state directly. After changing the state, send a
display message to show the NSButtonCell’s new appearance. (NSButton does this automatically.)

An NSButtonCell sends its action message to its target once if its view is clicked and it gets the mouse-down event,
but can also send the action message continuously as long as the mouse is held down with the cursor inside the
NSButtonCell. The NSButtonCell can show that it's being pressed by highlighting in several ways—for example,

a bordered NSButtonCell can appear pushed into the screen, or the image or title can change to an alternate form
while the NSButtonCell is pressed.

An NSButtonCell can also have a key equivalent (like a menu item). If the NSButtonCell is displayed in the key
window, the NSButtonCell gets the first chance to receive events related to key equivalents. This feature is used
quite often in modal panels that have an “OK” button containing the image that represents the Return key. Usually
an NSButtonCell displays a key equivalent as its image; if you ever set an image for the NSButtonCell, the key
equivalent remains, but doesn'’t get displayed.

For more information on NSButtonCell's behavior, see the NSButton and NSMatrix class specifications.
Exceptions

In its implementation of theompare: method (declared in NSCell), NSButtonCell raises
NSBadComparisonException if tlitherCellargument is not of the NSButtonCell class.

OpenStep Specification—10/19/94 Classes: NSButtonCell 1-35

Setting the Titles
— (NSString *plternateTitle

— (void)setAlternateTitle: (NSString *)aString

— (void)setFont(NSFont *fontObject
— (void)setTitle:(NSString *aString

— (NSString *jitle

Setting the Images

— (NSImage *alternatelmage

— (NSCelllmagePositioimhagePosition

— (voidsetAlternatelmage(NSImage *anlmage

Returns the NSButtonCell's alternate title (used while the
button is in the highlighted state).

Makes a copy chStringand uses it as the NSButtonCell's
alternate title.

Sets the NSFont used to draw the title.

Makes a copy chStringand uses it as the NSButtonCell's
title.

Returns the NSButtonCell’s title.

Returns the NSButtonCell's alternate image (used while
the button is in the highlighted state).

Returns the position of the NSButtonCell's image.

Makesanimagethe alternate image.

— (void)setimagePosition{NSCellimagePositiomPosition

Setting the Repeat Inter val

— (void)getPeriodicDelay(float *)delay
interval: (float *)interval

— (void)setPeriodicDelay(float)delay
interval: (float)interval

Setting the Key Equivalent
— (NSString *keyEquivalent
— (NSFont *keyEquivalentFont

— (unsigned inReyEquivalentModifierMask

Sets the position of the NSButtonCell's image in relation to
its title.

Gets repeat parameters for continuous NSButtonCells.

Sets repeat parameters for continuous NSButtonCells.

Returns the NSButtonCell’s key equivalent.
Returns the NSFont used to draw the key equivalent.

Returns the mask indicating the possible modifier keys for
NSButtonCell's key equivalent.

— (voidsetKeyEquivalent(NSString *aKeyEquivalent

1-36 Chapter 1: Application Kit

Sets the NSButtonCell's key equivalent.

OpensStep Specification—10/19/94

— (voidsetKeyEquivalentModifierMask: (unsigned inthask

— (voidsetKeyEquivalentFont(NSFont *fontObj

Sets the mask that determines the possible modifier keys
for NSButtonCell’s key equivalent.

Sets the NSFont used to draw the key equivalent.

— (voidsetKeyEquivalentFont(NSString *fontName

size(floatfontSize

Modifying Graphic Attributes
— (BOOL)sOpaque
— (BOOL)isTransparent
— (voidsetTransparent(BOOL)flag

Modifying Graphic Attributes
— (inthighlightsBy
— (void)setHighlightsBy:(int)aType
— (void)setShowsStateByint)aType

— (void)setType(NSButtonTypeaType

— (int)showsStateBy

Simulating a Click
— (voidyerformClick: (id)sender

OpenStep Specification—10/19/94

Sets the NSFont and size used to draw the key equivalent.

Returns whether receiver is opaque.
Returns whether the NSButtonCell is transparent.

Sets whether the NSButtonCell is transparent.

Returns how the NSButtonCell highlights when pressed.
Sets how the NSButtonCell highlights when pressed.

Sets how the NSButtonCell shows its alternate (pressed)
state.

Sets the NSButtonCell's display behavior.

Returns how NSButtonCell shows its alternate (pressed)
state.

Simulates a user’s mouse click on the NSButtonCell.

Classes: NSButtonCell 1-37

NSCachedimageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSCachedlmageRep.h

Class Description

NSCachedlimageRep, a subclass of NSImageRep, defines an object that stores its source data as a rendered image
in a window, typically a window that stays off-screen. The only data that's available for reproducing the image is

the image itself. Thus an NSCachedimageRep differs from the other kinds of NSImageReps defined in the
Application Kit, all of which can reproduce an image from the information originally used to draw it. Instances of

this class are generally used indirectly, through an NSImage object.

Initializing an NSCachedlmageRep

— (id)initwithSize: (NSSizepSize Initializes a new NSCachedlmageRep for an image of the
depth:(NSWindowDepthaDepth specified size and depth. Téeparateargument
separate(BOOL)separate specifies whether the image will get its own unique
alpha:(BOOL)alpha cache, instead of possibly sharing one with other

images. For best performance (although it's not
essential), thalphaargument should be set according
to whether the image will have a channel for
transparency information.

— (id)initWithwindow: (NSWindow *)aWindow Initializes the new NSCachedIimageRep for an image to be
rect:(NSRectaRect drawn in the rectangl@Rectof the specified window.
This method retaingWindow

Getting the Representation
— (NSRectlect Returns the rectangle where the image is cached.

— (NSWindow *window Returns the NSWindow where the image is cached.

1-38 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSCell

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSCell.h

Class Description

The NSCell class provides a mechanism for displaying text or images in an NSView without the overhead of a full
NSView subclass. In particular, it provides much of the functionality of the NSText class by providing access to a
shared NSText object used by all instances of NSCell in an application. NSCells are also extremely useful for
placing titles or images at various locations in a custom subclass of NSView.

NSCell is used heavily by most of the NSControl classes to implement their internal workings. For example,
NSSlider uses an NSSliderCell, NSTextField uses an NSTextFieldCell, and NSBrowser uses an NSBrowserCell.
Sending a message to the NSControl is often simpler than dealing directly with the corresponding NSCell. For
instance, NSControls typically invokgdateCell: (causing the cell to be displayed) after changing a cell attribute;
whereas if you directly call the corresponding method of the NSCell, the NSCell might not automatically display
itself again.

Some subclasses of NSControl (notably NSMatrix) allow multiple NSCells to be grouped and to act together in
some cooperative manner. Thus, with an NSMatrix, a group of radio buttons can be implemented without needing
an NSView for each button (and without needing an NSText object for the text on each button).

The NSCell class provides primitives for displaying text or an image, editing text, formatting floating-point
numbers, maintaining state, highlighting, and tracking the mouse. NSCell's method
trackMouse:inRect:ofView:untilMouseUp: supports the target object and action method used to implement
controls. However, NSCell implements target/action features abstractly, deferring the details of implementation to
subclasses of NSActionCell.

TheinitimageCell: method is the designated initializer for NSCells that display imagesitTrextCell: method

is the designated initializer for NSCells that display text. Override one or both of these methods if you implement
a subclass of NSCell that performs its own initialization. If you need to use target and action behavior, you may
prefer to subclass NSActionCell, which provides the default implementation of this behavior.

For more information on how NSCell is used, see the NSControl class specification.

Initializing an NSCell
— (id)initimageCell: (NSImage janimage Initializes a new NSCell with the NSimagalmage.

— (id)initTextCell: (NSString *|String Initializes a new NSCell with titlaString

OpenStep Specification—10/19/94 Classes: NSCell 1-39

Determining Component Sizes
— (void)calcDrawlnfo: (NSRectaRect
— (NSSizegellSize

— (NSSizegellSizeForBounds{NSRectaRect

Implemented by subclasses to recalculate drawing sizes.
Returns the minimum size needed to display the NSCell.

Returns the minimum size needed to display the NSCell.

— (NSRectjirawingRectForBounds:(NSRect)heRect

Returns the rectangle the NSCell draws in.

— (NSRectimageRectForBounds{(NSRect}heRect Returns the rectangle that the cell’'s image is drawn in.

— (NSRectjtleRectForBounds:(NSRect)heRect

Setting the NSCell's Type
— (voidsetType(NSCellTypeaType
— (NSCellTypelype

Setting the NSCell's State
— (void)setState(int)value

— (int)state

Enabling and Disabling the NSCell
— (BOOL)sEnabled
— (void)setEnabled(BOOL)flag

Setting the Image
— (NSImage *Image

— (voidsetimage(NSImage *animage

Setting the NSCell's Value
— (doublejloubleValue
— (float¥loatValue
— (int)intValue

— (NSString *stringValue

1-40 Chapter 1: Application Kit

Returns the rectangle that the cell’s title is drawn in.

Sets the NSCell's type @lype
Returns the NSCell’s type.

Sets the state of the NSCellMalue (0 or 1).
Returns the state of the NSCell (0 or 1).

Returns whether the NSCell reacts to mouse events.

Sets whether the NSCell reacts to mouse events.

Returns the NSCell's image.

Makesanimagethe NSCell's image.

Returns the NSCell's value aslauble.
Returns the NSCell's value asleat.
Returns the NSCell's value as ian.

Returns the NSCell's value as a string.

OpenStep Specification—10/19/94

— (void)setDoubleValue(doublepDouble Sets the NSCell’s value aDouble

— (voidsetFloatValue{floatjaFloat Sets the NSCell's value ai-loat
— (void)setintValue:(int)anint Sets the NSCell's value nint.
— (void)setStringValue (NSString *aString Sets the NSCell’s value to a copyaString

Interacting with Other NSCells

— (voidtakeDoubleValueFrom:(id)sender Sets the NSCell's value t®ndels double floating-point
value.

— (voidtakeFloatValueFrom:(id)sender Sets the NSCell’s value sendels floating-point value.

— (voidYtakelntValueFrom: (id)sender Sets the NSCell's value 8&ndels integer value.

— (voidtakeStringValueFrom:(id)sender Sets the NSCell's value t®ndels string value.

Modifying Text Attributes

— (NSTextAlignmen@lignment Returns the alignment of text in the NSCell.

— (NSFont *font Returns the Font used to display text in the NSCell.
— (BOOL)sEditable Returns whether the NSCell's text is editable.

— (BOOL)isSelectable Returns whether the NSCell’s text is selectable.

— (BOOL)isScrollable Returns whether the NSCell scrolls to follow typing.

— (void)setAlignment:(NSTextAlignmentinode Sets the alignment of text in the NSCelhtode

— (voidsetEditable(BOOL)flag Sets whether the NSCell's text is editable.

— (void)setFont(NSFont *fontObject Sets the Font used to display text in the NSCell to
fontObject

— (void)setSelectablgBOOL)flag Sets whether the NSCell's text is selectable.

— (void)setScrollable(BOOL)flag Sets whether the NSCell scrolls to follow typing.

— (NSText *petUpFieldEditorAttributes: (NSText *textObject
Sets NSText parameters for the field editor. (See the
documentation for NSText.)

— (voidsetWraps:(BOOL)flag Sets whether the NSCell’s text is word-wrapped.
— (BOOL)wraps Returns whether the NSCell’s text is word-wrapped.

OpenStep Specification—10/19/94 Classes: NSCell 1-41

Editing Text

— (void)editWithFrame: (NSRectaRect
inView: (NSView *)controlView

editor: (NSText *}textObject
delegate(id)anObject
event(NSEvent *theEvent

— (void)endEditing: (NSText *textObject

— (void)selectWithFrame:(NSRectaRect
inView: (NSView *)controlView

editor: (NSText *textObject
delegate(id)anObject

start: (int)selStart
length:(int)selLength

Validating Input
— (intlentryType

— (BOOL)sEntryAcceptable:(NSString *)aString

— (void)setEntryType:(int)aType

Formatting Data

Allows text editing in response to a mouse-down event.

Ends any text editing occurring in the NSCell.

Allows text selection in response to a mouse-down event.

Returns the type of data the user can type into the NSCell.
Returns whetheaStringis acceptable for the entry type.

Sets the type of data the user can type into the NSCell.

— (voidsetFloatingPointFormat:(BOOL)autoRange Sets the display format for floating-point values.

left: (unsigned inteftDigits

right: (unsigned intightDigits

Modifying Graphic Attributes
— (BOOL)sBezeled
— (BOOL)sBordered
— (BOOL)sOpaque
— (void)setBezeledBOOL)flag
— (voidsetBordered(BOOL)flag

1-42 Chapter 1: Application Kit

Returns whether the NSCell has a bezeled border.
Returns whether NSCell has a plain border.
Returns whether the NSCell is opaque.

Sets whether the NSCell has a bezeled border.

Sets whether the NSCell has a plain border.

OpenStep Specification—10/19/94

Setting Parameters

— (int)cellAttribute: (NSCellAttributepParameter
Returns various flag values.

— (void)setCellAttribute: (NSCellAttribute pParameter

to: (int)value Sets various NSCell flags.
Displaying
— (NSView *)controlView Implemented by subclasses to return the NSView last

drawn in (normally an NSControl).

— (void)rawlnteriorWithFrame: (NSRectfellFrame Draws the area within the NSCell's bordecamtrolView.
inView: (NSView *)controlView

— (voiddrawWithFrame: (NSRectyellFrame Draws the entire NSCell icontrolView.
inView: (NSView *)controlView

— (voidhighlight: (BOOL)lit If lit is YES, highlights the NSCell icontrolView
withFrame: (NSRectellFrame otherwise unhighlights.

inView: (NSView *)controlView

— (BOOL)isHighlighted Returns whether the NSCell is highlighted.

Target and Action

— (SEL)ction Implemented by subclasses to return the action method.

— (BOOL)isContinuous Returns whether the NSCell continuously sends the action.
— (int)sendActionOny(int)mask Determines when the action is sent while tracking.

— (void)setAction:(SEL)aSelector Implemented by subclasses to set the action method.

— (void)setContinuous(BOOL)flag Sets whether the NSCell continuously sends the action.

— (void)setTarget(id)anObject Implemented by subclasses to set the target object.

— (id)target Implemented by subclasses to return the target object.

Assigning a Tag
— (voidsetTag{int)anint Implemented by subclasses to set an identifier tag.

— (int)tag Implemented by subclasses to return the identifier tag.

OpenStep Specification—10/19/94 Classes: NSCell 1-43

Handling Keyboard Alternatives

— (NSString *keyEquivalent

Tracking the Mouse

+ (BOOL)prefersTrackingUntilMouseUp

— (BOOL)continueTracking: (NSPoint)astPoint
at: (NSPointgurrentPoint
inView: (NSView *)controlView

— (intmouseDownFlags

— (void)getPeriodicDelay(float *)delay
interval: (float *)interval

— (BOOL)startTrackingAt: (NSPointstartPoint
inView: (NSView *)controlView

— (void)stopTracking: (NSPoint)astPoint
at:(NSPointstopPoint
inView: (NSView *)controlView
mouselsUp(BOOL)flag

— (BOOL)YrackMouse:(NSEvent *theEvent
inRect:(NSRectkellFrame
ofView: (NSView *)controlView
untilMouseUp: (BOOL)flag

Managing the Cursor

— (voidyesetCursorRect(NSRectEellFrame
inView: (NSView *)controlView

Comparing to Another NSCell
— (NSComparisonResutympare:(id)otherCell

1-44 Chapter 1: Application Kit

Implemented by subclasses to return a key equivalent.

Returns NO, so tracking stops when the mouse leaves the
NSCell; subclasses may override.

Returns whether tracking should continue based on
lastPoinandcurrentPointwithin controlView

Returns the event flags set at the start of mouse tracking.

Returns repeat values for continuous sending of the action.

Determines whether tracking should begin based on
startPointvithin controlView

Allows the NSCell to update itself to end tracking, based on
lastPoinaindstopPointwithin controlView flag is YES
if this method was invoked because the mouse went up.

Tracks the mouse, returning YES if the mouse goes up
while in cellFrame This method is usually invoked by
an NSControl'snouseDown:method, which passes
the mouse-down event theEventlf flagis YES, the
method keeps tracking until the mouse goes up;
otherwise it tracks until the mouse leaceiFrame.

Sets text NSCells to show the I-beam cursor.

Compares the string values of this cell atigerCell
(which must be a kind of NSCell). Raises
NSBadComparisonExceptionatherCellis not of the
NSCell class.

OpenStep Specification—10/19/94

Using the NSCell to Represent an Object
— (id)representedObject
— (void)setRepresentedObjectid)anObject

OpenStep Specification—10/19/94

Returns the object that the receiver represents, if any.

Creates an association between the receiveaa@bject
anObjectwill be retained, released, archived, and
unarchived whenever the receiver is. If another cell is
already associated wiinObjectthat association is
broken, and the receiver is associated with the object.

Classes: NSCell 1-45

NSClipView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSClipView.h

Class Description

An NSClipView object lets you scroll a document that may be larger than the NSClipView's frame rectangle,
clipping the visible portion of the document to the frame. You don’t normally use the NSClipView class directly;
it's provided primarily as the scrolling machinery for the NSScrollView class. However, you might use the
NSClipView class to implement a class similar to NSScrollView.

The document, which must be an NSView, is called the NSClipVidegament viewAn NSClipView’s document

view, which is set through theetDocumentView:method, is the NSClipView’s only subview. You can set the
cursor that’s displayed when the mouse enters an NSClipView’s frame (in other words, when it's poised over the
document view) through treetDocumentCursor:method.

When the NSClipView is instructed to scroll its document view, it normally copies that portion of the document
view that'’s visible both before and after the scrolling, so that this part won't need to be redrawn from scratch.
However, you can turn off this behavior and force the entire visible area to be redrawn by sending the NSClipView
asetCopiesOnScroll:NOmessage.

After scrolling, the NSClipView sends itselsatNeedsDisplaylnRectmessage to indicate that some part of the
document view should be displayed again. The argument to this message is the freshly exposed area of the
document view, unless the NSClipView receivesktCopiesOnScroll:NOmessage, in which case the argument
is the entire visible area.

The NSClipView sends its superview (usually an NSScrollVieveflactScrolledClipView: message whenever

the relationship between the NSClipView and the document view has changed. This allows the superview to update
itself to reflect the change—for example, the NSScrollView class uses this method to change the position of its
scrollers when the user causes the document to autoscroll.

Managing the Document V iew

— (NSRectilocumentRect Returns the document rectangle.

— (idYdocumentView Returns the NSClipView’s document view.

— (NSRectllocumentVisibleRect Gets the visible portion of the document view.
— (voidsetDocumentView(NSView *)aView MakesaViewthe NSClipView’s document view.

1-46 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting the Cursor
—(NSCursor *jlocumentCursor Returns the cursor for the document view.

— (void)setDocumentCursor(NSCursor *anObject Sets the cursor for the document view.

Setting the Background Color
— (NSColor *packgroundColor Returns the NSClipView's background color.
— (void)setBackgroundColor(NSColor *)xolor Sets the NSClipView’s background color.

Scrolling
— (BOOL)autoscroll:(NSEvent *theEvent Scrolls in response to mouse-dragged events.

— (NSPointyonstrainScrollPoint:(NSPointhewOrigin
Prevents scrolling to an undesirable position.

— (BOOL)copiesOnScroll Indicates whether the visible portions of the document
view are copied when scrolling occurs. If not, the
document view is responsible for redrawing the entire
visible portion. The default is YES.

— (void)scrollToPoint: (NSPointhewOrigin Lowest-level unconstrained scrolling routine.

— (void)setCopiesOnScroll(BOOL)flag Sets how the visible areas are redrawn.
Responding to a Changed Frame

— (voidviewFrameChanged(NSNotification *notification
Notification that the document view’s frame has changed.

OpenStep Specification—10/19/94 Classes: NSClipView 1-47

NSCoder Additions

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSColor.h

Class Description

The Application Kit adds this method to the Foundation Kit's NSCoder class. This method becomes part of the class
for all applications that use the Application Kit, but not for applications that don't.

Converting an Archived NXColor to an NSColor

— (NSColor *decodeNXColor Returns an autoreleased NSColor object equivalent to the
archived NXColor structure. This method is needed to
read colors from archives that were created by
pre-OpenStep versions of NEXTSTEP.

1-48 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSColor

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSColor.h

An NSColor represents a color. The color can be a grayscale value and can include alpha (opacity) information. By
sending setmessage to an NSColor instance, you set the color for the current PostScript drawing context. This
causes subsequently drawn graphics to have the color represented by the NSColor instance.

A color is defined in some particuleslor spaceA color space consists of a set of dimensions—such as red, green,

and blue in the case of RGB space. Each point in the space represents a unique color, and the point’s location along
each dimension is calledcamponentAn individual color is usually specified by the numeric values of its
components, which range from 0.0 to 1.0. For instance, a pure red is specified in RGB space by the component
values 1.0, 0.0, and 0.0.

Some color spaces include an alpha component, which defines the color's opacity. An alpha value of 1.0 means
completely opaque, and 0.0 means completely transparent. The alpha component is ignored when the color is used
on a device that doesn’t support alpha, such as a printer.

There are three kinds of color space in OpenStep:
» Device-dependenThis means that a given color might not look the same on different displays and printers.

» Device-independenalso known asalibrated.With this sort of color space, a given color should look the
same on all devices.

« Named The “named color space” has components that aren’t numeric values, but simply names in various
catalogs of colors. Named colors come with lookup tables that provide the ability to generate the correct
color on a given device.

OpenStep includes six different color spaces, referred to by these enumeration constants:
NSDeviceCMYKColorSpace Cyan, magenta, yellow, black, and alpha components
NSDeviceWhiteColorSpace = White and alpha components

NSDeviceRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha components

NSCalibratedWhiteColorSpace White and alpha components

NSCalibratedRGBColorSpace Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha components

NSNamedColorSpace Catalog name and color name components

OpenStep Specification—10/19/94 Classes: NSColor 1-49

(Color spaces whose names start with “NSDevice” are device-dependent; those with “NSCalibrated” are
device-independent.)

There’s usually no need to retrieve the individual components of a color, but when needed, you can either retrieve
a set of components (using such methodgetRed:green:blue:alpha) or an individual component (using such
methods asedComponeni). However, it's illegal to ask an NSColor for components that aren't defined for its

color space. You can identify the color space by sendajoaSpaceNamemethod to the NSColor. If you need

to ask an NSColor for components that aren't in its color space (for instance, when you've gotten the color from
the color panel), first convert the color to the appropriate color space usoawdigsingColorSpaceName:

method. If the color is already in the specified color space, you get the same color back; otherwise you get a
conversion that's usually lossy or that’s correct only for the current device. You might also gei lifattie

specified conversion can't be done.

Subclasses of NSColor need to implementtierSpaceNamendsetmethods, as well as the methods that return

the components for that color space and the methods in the NSCoding protocol. Some other methods—such as
colorWithAlphaComponent:, isEqual:, andcolorUsingColorSpaceName:device--may also be implemented

if they make sense for the color space. Mutable subclasses (if any) should additionally imgdgry\fithZone:

to provide a true copy.

Creating an NSColor from Component Values

+ (NSColor *colorWithCalibratedHue: (floathue Creates and returns a new NSColor whose color space is

saturation: (float)saturation NSCalibratedRGBColorSpace, whose opacity value is
brightness:(float)brightness alphaand whose components in HSB space would be
alpha:(floatjalpha huesaturation andbrightnessAll values are legal, but

values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

+ (NSColor *colorWithCalibratedRed: (floatyed Creates and returns a new NSColor whose color space is

green;(float)green NSCalibratedRGBColorSpace, whose opacity value is
blue:(float)blue alpha and whose RGB components ed, greenand
alpha:(floatlalpha blue All values are legal, but values less than 0.0 are set

to 0.0, and values greater than 1.0 are set to 1.0.

+ (NSColor *xolorWithCalibratedWhite: (floatiwhite
alpha:(float)alpha Creates and returns a new NSColor whose color space is
NSCalibratedWhiteColorSpace, whose opacity value is
alpha, and whose grayscale valuenibite. All values
are legal, but values less than 0.0 are set to 0.0, and
values greater than 1.0 are set to 1.0.

+ (NSColor *xolorWithCatalogName:(NSString *JistName
colorName:(NSString *colorName Creates and returns a new NSColor whose color space is
NSNamedColorSpace, by finding the color named
colorNamein the catalog namditName.

1-50 Chapter 1: Application Kit OpenStep Specification—10/19/94

+ (NSColor *xolorWithDeviceCyan:(float)cyan
magenta(floatimagenta
yellow:(float)yellow
black: (float)black
alpha:(float)alpha

+ (NSColor *xolorWithDeviceHue:(floathue
saturation: (float)saturation
brightness:(float)brightness
alpha:(floatjalpha

+ (NSColor *xolorWithDeviceRed (floatyed
green;(float)green
blue:(float)blue
alpha:(floatlalpha

+ (NSColor *xolorWithDeviceWhite: (float)white
alpha:(float)alpha

Creating an NSColor With Preset Components

+ (NSColor *plackColor

+ (NSColor *blueColor

+ (NSColor *prownColor

+ (NSColor *xlearColor

+ (NSColor *yanColor

OpenStep Specification—10/19/94

Creates and returns a new NSColor whose color space is
NSDeviceCMYKColorSpace, whose opacity value is
alpha and whose CMYK components angan
magentayellow andblack All values are legal, but
values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

Creates and returns a new NSColor whose color space is
NSDeviceRGBColorSpace, whose opacity value is
alphaand whose components in HSB space would be
huesaturation andbrightnessAll values are legal, but
values less than 0.0 are set to 0.0, and values greater
than 1.0 are set to 1.0.

Creates and returns a new NSColor whose color space is
NSDeviceRGBColorSpace, whose opacity value is
alpha and whose RGB components ed, greenand
blue All values are legal, but values less than 0.0 are set
to 0.0, and values greater than 1.0 are set to 1.0.

Creates and returns a new NSColor whose color space is
NSDeviceWhiteColorSpace, whose opacity value is
alpha, and whose grayscale valuenibite. All values
are legal, but values less than 0.0 are set to 0.0, and
values greater than 1.0 are set to 1.0.

Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 0.0 and whose alpha value is
1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.0, 0.0, 1.0 and whose alpha value
is 1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.6, 0.4, 0.2 and whose alpha value
is 1.0.

Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale and alpha values are both 0.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.0, 1.0, 1.0 and whose alpha value
is 1.0.

Classes: NSColor 1-51

+ (NSColor *darkGrayColor

+ (NSColor *grayColor

+ (NSColor *greenColor

+ (NSColor *)ightGrayColor

+ (NSColor *magentaColor

+ (NSColor *prangeColor

+ (NSColor *purpleColor

+ (NSColor *yedColor

+ (NSColor *whiteColor

+ (NSColor *yellowColor

Ignoring Alpha Components

+ (BOOL)ignoresAlpha

+ (void)setlgnoresAlpha(BOOL)flag

1-52 Chapter 1: Application Kit

Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 1/3 and whose alpha value is
1.0.

Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 0.5 and whose alpha value is
1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.0, 1.0, 0.0 and whose alpha value
is 1.0.

Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale value is 2/3 and whose alpha value is
1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 0.0, 1.0 and whose alpha value
is 1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 0.5, 0.0 and whose alpha value
is 1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 0.5, 0.0, 0.5 and whose alpha value
is 1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 0.0, 0.0 and whose alpha value
is 1.0.

Returns an NSColor in NSCalibratedWhiteColorSpace
whose grayscale and alpha values are both 1.0.

Returns an NSColor in NSCalibratedRGBColorSpace
whose RGB value is 1.0, 1.0, 0.0 and whose alpha value
is 1.0.

Returns YES (the default) if the application hides the color
panel’s opacity slider and sets imported colors’ alpha
values to 1.0.

If flagis YES, no opacity slider is displayed in the color
panel, and colors dragged in or pasted have their alpha
values set to 1.0.

OpenStep Specification—10/19/94

Retrieving a Set of Components

— (void)getCyan:(float *)cyan
magentaifloat *)magenta
yellow:(float *)yellow
black: (float *)black
alpha:(float *)alpha

— (void)getHue (float *)hue
saturation: (float *)saturation
brightness:(float *)brightness
alpha:(float *)alpha

— (void)getRed{float *)red
green(float *)green
blue:(float *)blue
alpha:(float *)alpha

— (void)getWhite:(float *)white
alpha:(float *)alpha

OpenStep Specification—10/19/94

Returns the CMYK and alpha values in the respective
arguments. INULL is passed in as an argument, the
method doesn'’t set that value. It's an error if the
receiver isn't a CMYK color.

Returns the HSB and alpha values in the respective
arguments. INULL is passed in as an argument, the
method doesn't set that value. It's an error if the
receiver isn'ta CMYK color.

Returns the RGB and alpha values in the respective
arguments. INULL is passed in as an argument, the
method doesn’t set that value. It's an error if the
receiver isn't a CMYK color.

Returns the grayscale and alpha values in the respective
arguments. INULL is passed in as an argument, the
method doesn'’t set that value. It's an error if the receiver
isn't a CMYK color.

Classes: NSColor 1-53

Retrieving Individual Components

— (floatplphaComponent Returns the alpha (opacity) component (1.0 by default).

— (floatplackComponent Returns the black component. It's an error if the receiver
isn't a CMYK color.

— (floatplueComponent Returns the blue component. It’'s an error if the receiver

isn’t an RGB color.

— (floatprightnessComponent Returns the brightness component of the HSB color
equivalent to the receiver. It's an error if the receiver
isn’t an RGB color.

— (NSString *ratalogNameComponent Returns the name of the catalog containing this colai] or
if the receiver’s color space isn't NSNamedColorSpace.

— (NSString *rolorNameComponent Returns the name of this color,rat if the receiver’s color
space isn't NSNamedColorSpace.

— (floatcyanComponent Returns the cyan component. It's an error if the receiver
isn't a CMYK color.

— (floatgreenComponent Returns the green component. It's an error if the receiver
isn't an RGB color.

— (floathueComponent Returns the hue component of the HSB color equivalent to
the receiver. It's an error if the receiver isn't an RGB
color.

— (NSString *JocalizedCatalogNameComponent Like catalogNameComponentbut returns a localized
string.

— (NSString *JocalizedColorNameComponent Like colorNameComponent but returns a localized
string.

— (floatmagentaComponent Returns the magenta component. It's an error if the receiver
isn’'t a CMYK color.

— (floatyedComponent Returns the red component. It's an error if the receiver isn't
an RGB color.

— (floatsaturationComponent Returns the saturation component of the HSB color
equivalent to the receiver. It's an error if the receiver
isn't an RGB color.

— (floatwhiteComponent Returns the white component. It's an error if the receiver
isn’t a grayscale color.

— (floatyellowComponent Returns the yellow component. It's an error if the receiver
isn'ta CMYK color.

1-54 Chapter 1: Application Kit OpenStep Specification—10/19/94

Converting to Another Color Space
— (NSString *rolorSpaceName Returns the name of the NSColor’s color space.

— (NSCaolor *rolorUsingColorSpaceNamgNSString *olorSpace

Returns a newly created NSColor whose color is the same
as the receiver’s, except that the new NSColor is in the
color space namezblorSpaceThis method calls
colorUsingColorSpaceName:devicewith the current
device, indicating that the color is appropriate for the
current device (the current window if drawing, or the
current printer if printing).

— (NSColor *rolorUsingColorSpaceNamgiNSString *olorSpace
device(NSDictionary *deviceDescription Returns a newly created NSColor whose color is the same
as the receiver’s, except that the new NSColor is in the
color space namezblorSpaceand is specific to the
device described bgeviceDescription.

Changing the Color

— (NSCaolor *plendedColorWithFraction: (float)fraction
ofColor: (NSColor *)aColor Returns a newly created NSColor in

NSCalibratedRGBColorSpace whose component
values are a weighted sum of the receiver's and
aColors. The method conver&Colorand a copy of the
receiver to RGB, and then sets each component of the
returned color tdraction of aColor's value plus
1 —fraction of the receiver’s. If the colors can’t be
converted to NSCalibratedRGBColorSpaui¢,is
returned.

— (NSColor *rolorWithAlphaComponent: (floatlalpha
Returns a newly created NSColor that has the same color
space and component values as the receiver, except that
its alpha component &pha If the receiver’s color
space doesn't include an alpha component, the receiver
is returned.

Copying and Pasting

+ (NSColor *colorFromPasteboard(NSPasteboard pasteBoard
Returns the NSColor currently on the pasteboardil of
the pasteboard doesn’t contain color data. The returned
color’'s alpha component is set to 1.@jifioresAlpha
returns YES.

OpenStep Specification—10/19/94 Classes: NSColor 1-55

— (voidwriteToPasteboard:(NSPasteboard pasteBoard
Writes the receiver’s data to the pasteboard, unless the

pasteboard doesn’t support color data (in which case the
method does nothing).

Drawing
— (void)rawSwatchInRect:(NSRectject Draws the current color in the rectangdet Subclasses
adorn the rectangle in some manner to indicate the type
of color. This method is invoked by color wells,
swatches, and other user-interface objects that need to
display colors.
— (void)set Sets the color of subsequent PostScript drawing to the color

that the receiver represents. If the application is drawing
to the screen rather than printing, this method also sets
the current drawing context’s alpha value to the value
returned byalphaComponent

1-56 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSColorList

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Declared In: AppKit/NSColorList.h

Class Description

Instances of NSColorList are used to manage named lists of NSColors. NSColorPanel’s list-mode color picker uses
instances of NSColorList to represent any lists of colors that come with the system, as well as any lists created by
the user. An application can use NSColorList to manage document-specific color lists, which may be added to an
application’s NSColorPanel using @gtachColorList: method.

An NSColorList is similar to a dictionary object: An NSColor is added to, looked up in, and removed from the list
by specifying its key, which is an NSString. In addition, colors can be inserted at specified positions in the list. The
list itself has a name, specified when you create the object (usingiwifléthName: or

initwithName:fromFile:).

An NSColorList saves and retrieves its colors from files with the extetisiohin directories defined by a
standard search path. To access all the color lists in the standard search patlayadehteColorLists method;
this returns an array of NSColorLists, from which you can retrieve the individual color lists by name.

NSColorList reads color list files in several different formats; it saves color lists using the archiver API.

Initializing an NSColorList

— (id)initwithName: (NSString *nhame Initializes and returns the receiver, registering it under the
specified name if the name isn’t in use already.

— (id)initWithName: (NSString *name Initializes and returns the receiver, registering it under the
fromFile: (NSString *path specified name if the name isn’t in use alrepayh

should be the full path to the file for the color Iiime
should be the name of the file for the color list (minus
the “.clr” extension).

Getting All Color Lists

+ (NSArray *)availableColorLists Returns an array of all NSColorLists found in the standard
color list directories. Color lists created at run time
aren’'t included in this list unless they're saved into one
of the standard color list directories.

OpenStep Specification—10/19/94 Classes: NSColorList 1-57

Getting a Color List by Name
+ (NSColorList *olorListNamed:(NSString *nhame

Searches the array that’s returnedafsgtilableColorLists

— (NSString *pame

Managing Colors by Key
— (NSArray *allKeys

— (NSCaolor *rolorWithKey: (NSString *key

— (void)insertColor: (NSColor *)xolor
key:(NSString *key
atindex: (unsignedpcation

— (voidyemoveColorWithKey: (NSString *key

— (void)setColor:(NSColor *)aColor
forKey: (NSString *key

1-58 Chapter 1: Application Kit

and returns the NSColorList namedame or nil if no
such color list existsxamemustn’t include the “.clr”
suffix.

Returns the name of the NSColorList.

Returns an array of NSString objects that contains all the

keys by which the NSColors are stored in the
NSColorList. The length of this array equals the
number of colors, and its contents are arranged
according to the ordering specified when the colors
were inserted.

Returns the NSColor associated Wiy or nil if there is

none

Insertscolor at the specified location in the list (which is

numbered starting with 0). If the list already contains a
color with the same key at a different location, it's
removed from the old location. This method posts the
NSColorListChangedNotification notification to the
default notification center. Raises
NSColorListNotEditableException if the color list is
not editable. This method posts the
NSColorListChangedNotification notification to the
default notification center.

Removes the color associated wkttyfrom the list. This

method does nothing if the list doesn’t contain the key.
This method posts the
NSColorListChangedNoatification notification to the
default notification center. Raises
NSColorListNotEditableException if the color list is
not editable.

Associates the specified NSColor with the key If the

list already containkey this method sets the
corresponding color taColor; otherwise, it inserts
aColor at the end of the list.

OpensStep Specification—10/19/94

Editing
— (BOOL)isEditable

Writing and Removing Files

— (BOOL)writeToFile: (NSString *path

— (voidyemoveFile

OpenStep Specification—10/19/94

Returns YES if the color list can be modified. This depends
on the source of the list: If it came from a
write-protected file, this method returns NO.

If pathis a directory, saves the NSColorList in a file named
listnameclr (wherdistnameis the name with which the
NSColorList was initialized). Ipathincludes a file
name, this method saves the file under that narpathf
is nil, this method saves the file lagtnameclr in the
standard location. Returns YES upon success.

Deletes the file from which the list was created, unless the
user doesn’t own the color list. The receiver is removed
from the list of available colors, but isn't released.

Classes: NSColorList 1-59

NSColorPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObiject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSColorPanel.h

Class Description

NSColorPanel provides a standard user interface for selecting color in an application. It provides a number of
standard color selection modes, and, with the NSColorPickingDefault and NSColorPickingCustom protocols,
allows an application to add its own color selection modes. It allows the user to save swatches containing frequently
used colors. Once set, these swatches are displayed by NSColorPanel in any application where it is used, giving the
user color consistency between applications. NSColorPanel enables users to capture a color anywhere on the screen
for use in the active application, and allows dragging colors from itself into views in an application. NSColorPanel’'s
action message is sent to the target object when the user changes the current color.

An application has only one instance of NSColorPanel, the shared instance. InvokingréuColorPanel:
method returns the shared instance of NSColorPanel, instantiating it if necessary. You can also initialize an
NSColorPanel for your application by invoking NSApplicatioorderFrontColorPanel method.

You can put NSColorPanel in any application created with Interface Builder by adding the “Colors...” item from
the Menu palette to the application’s menu.

Color Mask and Color Modes

The color mask determines which of the color modes are enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of the other
color mask constants: it causes the NSColorPanel to display all standard color pickers. When initializing a new
instance of NSColorPanel, you can logically OR any combination of color mask constants to restrict the available
color modes.

Mode Color Mask Constant
Grayscale-Alpha NSColorPanelGrayModeMask
Red-Green-Blue NSColorPanelRGBModeMask

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask
Hue-Saturation-Brightness NSColorPanel[HSBModeMask

TIFF image NSColorPanelCustomPaletteModeMask
Custom color lists NSColorPanelColorListModeMask
Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllIModesMask

1-60 Chapter 1: Application Kit OpensStep Specification—10/19/94

The NSColorPanel’s color mode mask is set using the class nsstitidkerMask:. The mask must be set before
creating an application’s instance of NSColorPanel.

When an application’s instance of NSColorPanel is masked for more than one color mode, your program can set
its active mode by invoking treetMode method with a color mode constant as its argument; the user can set the
mode by clicking buttons on the panel. Here are the standard color modes and mode constants:

Mode Color Mode Constant
Grayscale-Alpha NSGrayModeColorPanel
Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel
Hue-Saturation-Brightness NSHSBModeColorPanel

TIFF image NSCustomPaletteModeColorPanel
Color lists NSColorListModeColorPanel
Color wheel NSWheelModeColorPanel

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the user
adjusts colors by manipulating sliders. In the custom palette mode, the user can load a TIFF file into the
NSColorPanel, then select colors from the TIFF image. In custom color list mode, the user can create and load lists
of named colors. The two custom modes provide NSPopUplLists for loading and saving files. Finally, color wheel
mode provides a simplified control for selecting colors. If a color panel has been used, it uses whatever mode it was
in last as the default mode when NSColorPanelAllModesMask is used to initialize the NSColorPanel. Otherwise,
it uses color wheel mode.

Associated Classes and Protocols

The NSColorList class provides an API for managing custom color lists. The NSColorPanel methods
attachColorList: anddetachColorList: let your application add and remove custom lists from the
NSColorPanel’s user interface.

The protocols NSColorPickingDefault and NSColorPickingCustom provide an API for adding custom color
selection to the user interface. The NSColorPicker class implements the NSColorPickingDefault protocol; you can
subclass NSColorPicker and implement the NSColorPickingCustom protocol in your subclass to create your own
user interface for color selection.

See also: NSColorList, NSColorPickingDefault, NSColorPicker, NSColorPickingDefault protocol,
NSColorPickingCustom protocol, NSColorWell

Creating the NSColorPanel
+ (NSColorPanel '3haredColorPanel Creates if necessary and returns the shared NSColorPanel.

+ (BOOL)sharedColorPanelExists Returns YES if the NSColorPartes been created already.
Setting the NSColorPanel

+ (void)setPickerMask:(int)mask Sets the mask that determines which color selection modes
are available in the color panel.

OpenStep Specification—10/19/94 Classes: NSColorPanel 1-61

+ (void)setPickerModejfint)mode
— (NSView *)accessoryView

— (BOOL)isContinuous

— (intfmode

— (void)setAccessoryView(NSView *)aView
— (void)setAction:(SEL)aSelector

— (void)setContinuous(BOOL)flag

— (void)setMode{int)mode

— (voidsetShowsAlpha(BOOL)flag
— (voidsetTarget:(id)anObject

— (BOOL)showsAlpha

Attaching a Color List

— (void)attachColorList: (NSColorList *)aColorList

— (void)detachColorList:(NSColorList *)aColorList

Setting Color

+(BOOL)dragColor: (NSColor **)aColor
withEvent: (NSEvent *anEvent
fromView: (NSView *)sourceView

— (floatplpha

— (NSCaolor *xolor
— (void)setColor:(NSColor *)aColor

1-62 Chapter 1: Application Kit

Sets the color picker mode.
Returns the accessory view,ral if there is none.

Returns YES if the NSColorPanel continuously sends the
action message to the target.

Returns the mode of the NSColorPanel.
Sets the accessory viewdbiew
Sets the action message sent to the target.

Sets the NSColorPanel to continuously send the action
message to the target.

Sets the mode of the NSColorPanel.
Sets the NSColorPanel to show alpha values.
Sets the target of the NSColorPanel.

Returns YES if the NSColorPanel shows alpha values.

Adds the specified list of NSColais all the color pickers
in the color panel that display color lists.

Removes the specified list of NSCol@sm all the color
pickers in the color panéhat display color lists.

DragsaColorinto a destination view frorsourceView

Returns the NSColorPanel’s current alpha value, or 1.0
(opaque) if the panel has no opacity slider.

Returns the currently displayed color.

Sets the color to be displayed. This method posts the
NSColorPanelChangedNotification notification with
the receiving object to the default notification center.

OpensStep Specification—10/19/94

NSColorPicker

Inherits From: NSObject

Conforms To: NSColorPickingDefault
NSObject (NSObject)

Declared In: AppKit/NSColorPicker.h

Class Description

NSColorPicker is an abstract superclass that implements the NSColorPickingDefault protocol. The
NSColorPickingDefault and NSColorPickingCustom protocols define a way to add color pickers (custom user
interfaces for color selection) to the NSColorPanel. The simplest way to implement a color picker is to create a
subclass of NSColorPicker, instead of implementingdB&olorPickingDefaulprotocol in another kind of

object. (To add functionality, implement the NSColorPickingCustom methods in your subclass.)

The NSColorPickingDefault protocol specification describes the details of implementing a color picker and adding
it to your application’s NSColorPanel; you should look there first for an overview of how NSColorPicker works.
This specification is provided to document the specific behavior of NSColorPicker's methods.

Initializing an NSColorPicker

— (id)initwithPickerMask: (int)aMask Initializes the receiver for the specified mask and color
colorPanel:(NSColorPanel *golorPanel panel, caching theolorPanelvalue so it can later be
returned by theolorPanelmethod.

Getting the Color Panel
— (NSColorPanel RolorPanel Returns the NSColorPanel that owns this NSColorPicker.

Adding Button Images

— (void)nsertNewButtonImage:(NSIimage *hewlmage
in: (NSButtonCell *newButtonCell Called by the color panel to insert a new image the
specified cell. Override this method to customize
newlmagebefore insertion imewButtonCell

OpenStep Specification—10/19/94 Classes: NSColorPicker1-63

— (NSImage *provideNewButtonimage Returns the button image for the color picker. The color
panel will place this image in the mode button that the
user uses to select this picker. (This is the same image
that the color panel uses as an argument when sending
theinsertNewButtonimage:in: message.Jhe default
implementation looks in the color picker’s bundle for a
TIFF file named after the color picker’s class, with the
extension ".tiff".

Setting the Mode

— (voidsetModejfintymode Does nothing. Override to set the color picker's mode.

Using Color Lists

— (void)attachColorList: (NSColorList *)colorList ~ Does nothing. Override to attach a color list to a color

picker.
— (void)detachColorList:(NSColorList *)colorList Does nothing. Override to detach a color list from a color
picker.
Responding to a Resized View
— (voidviewSizeChangedid)sender Does nothing. Override to respond to a size change.

1-64 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSColorWell

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSColorWell.h

Class Description

NSColorWell is an NSControl for selecting and displaying a single color value. An example of an NSColorWell
object (or simply color well) is found in NSColorPanel, which uses a color well to display the current color
selection. NSColorWell is available from the Palettes panel of Interface Builder.

An application can have one or more active NSColorWells. You can activate multiple NSColorWells by invoking
theactivate: method with NO as its argument. When a mouse-down event occurs on an NSColorWell's border, it
becomes the only active color well. When a color well becomes active, it brings up the color panel also.

ThemouseDown:method enables an instance of NSColorWell to send its color to another NSColorWell or any
other subclass of NSView that implements the NSDraggingDestination protocol.

See also: NSColorPanel (class)

Drawing
— (void)drawWelllnside: (NSRect)nsideRect Draws the colored area inside the color well at the location
specified byinsideRectvithout drawing borders.
Activating
— (void)activate:(BOOL)exclusive Activates the NSColorWell, displays the Color panel, and
makes the NSColorPanel’'s current color the same as its
own. If exclusiveis YES, deactivates any other
NSColorWells; if NO, keeps them active.
— (void)deactivate Deactivates the NSColorWell.
— (BOOL)isActive Returns YES if the NSColorWell is active.

OpenStep Specification—10/19/94 Classes: NSColorWell 1-65

Managing Color
— (NSCaolor *rolor
— (void)setColor:(NSColor *)xolor

— (voidtakeColorFrom: (id)sender

Managing Borders
— (BOOL)sBordered
— (void)setBordered(BOOL)bordered

1-66 Chapter 1: Application Kit

Returns the color of the color well.
Sets the color of the well wolor.

Changes the color of the well to thatseihnder

Indicates whether the color well is bordered.

Places or removes a border, dependingadered

OpenStep Specification—10/19/94

NSControl

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSControl.h

Class Description

NSControl is an abstract superclass that provides three fundamental features for implementing user interface
devices. First, as a subclass of NSView, NSControl allows the on-screen representation of the device to be drawn.
Second, it receives and responds to user-generated events within its bounds by overriding NSResponder’s
mouseDown:method and providing a position in the responder chain. Third, it implemerstsritiAction:to:

method to send an action message to the NSControl's target object. Subclasses of NSControl defined in the
Application Kit are NSBrowser, NSButton (and its subclass NSPopUpButton), NSColorWell, NSMatrix (and its
subclass NSForm), NSScroller, NSSlider, and NSTextField.

Target and Action

Target objects and action methods provide the mechanism by which NSControls interact with other objects in an
application. A target is an object that an NSControl has effect over. The target class defines an action method to
enable its instances to respond to user input. An action method takes only one argurndeot:ttigesender. The

sender may be either the NSControl that sends the action message or another object that the target should treat as
the sender. When it receives an action message, a target can return messages to the sender requesting additional
information about its status. NSContrasndAction:to: asks the NSApplication object, NSApp, to send an action
message to the NSControl’s target object. The method used for this is NSApplicaiah’stion:to:from:. You

can also set the targetrid and allow it to be determined at run time. When the targek,ithe NSApplication

object must look for an appropriate receiver. It conducts its search in a prescribed order, by following the responder
chain until it finds an object that can respond to the message:

» It begins with the first responder in the key window and follogRespondeiinks up the responder chain
to the NSWindow object. After the NSWindow object, it tries the NSWindow’s delegate.

 If the main window is different from the key window, it then starts over with the first responder in the main
window and works its way up the main window’s responder chain to the NSWindow object and its delegate.

» Next, it tries to respond itself. If the NSApplication object can’t respond, it tries its own delegate. NSApp
and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the action method. However, these methods
require that an NSControl have an associated subclass of NSCell that provides a target and an action, such as
NSActionCell and its subclasses.

OpenStep Specification—10/19/94 Classes: NSControl 1-67

Target objects and action methods demonstrate the close relationship between NSControls and NSCells. In most
cases, a user interface device consists of an instance of an NSControl subclass paired with one or more instances
of an NSCell subclass. Each implements specific details of the user interface mechanism. For example,
NSControl'smouseDown:method sendstaackMouse:inRect:ofView:untilMouseUp: message to an NSCell,

which handles subsequent mouse and keyboard events; an NSCell sends an NS€smttAaiteon:to: message

in response to particular events. NSContrdiawRect: method is implemented by sending a

drawWithFrame:inView: message to the NSCell. As another example, NSControl provides methods for setting
and formatting its contents; these methods send corresponding messages to NSCell, which actually owns the
contents.

See the NSActionCell class specification for more on the implementation of target and action behavior.

Changing the NSCell Class

Since NSControl uses the NSCell class to implement most of its actual functionality, you can usually implement a
unigue user interface device by creating a subclass of NSCell rather than NSControl. As an example, let’s say you
want all your application’s NSSliders to have a type of cell other than the generic NSSliderCell. First, you create a
subclass of NSCell, NSActionCell, or NSSliderCell. (Let’s call it MyCellSubclass.) Then, you can simply invoke
NSSlider'ssetCellClass:class method:

[NSSlider setCellClass:[MyCellSubclass class]];
All NSSliders created thereafter will use MyCellSubclass, until youse#iellClass:again.

If you want to create generic NSSliders (ones that use NSSliderCell) in the same application as the customized
NSSliders that use MyCellSubclass, there are two possible approaches. One is teattvelk€lass:as above

whenever you're about to create a custom NSSlider, resetting the cell class to NSSliderCell afterwards. The other
approach is to create a custom subclass of NSSlider that automatically uses MyCellSubclass, as explained below.

Creating New NSControls

If you create a custom NSControl subclass that uses a custom subclass of NSCell, you should override’8iSControl
cellClassmethod:

+ (Class) cellClass

{

return [MyCellSubclass class];

}

NSControl'sinitWithFrame: method will use the return value adllClassto allocate and initialize an NSCell of
the correct type.

1-68 Chapter 1: Application Kit OpensStep Specification—10/19/94

If you want to be able to change the type of cell that your subclass uses (without changing the type that its superclass
uses), overrideetCellClass:to store the NSCell subclass in a global variable, and modii@lassto return that
variable:

static id myStoredCellClass;

+ setCellClass:classld

{

myStoredCellClass = classld;

}

+ (Class) cellClass

{
return (myStoredCellClass ? myStoredCellClass : [MyCellSubclass class]);

}

An NSControl subclass doesn’t have to use an NSCell subclass to implement itself; NSScroller and NSColorWell
are examples of NSControls that don’t. However, such subclasses have to take care of details that NSCell would
otherwise handle. Specifically, they have to override methods designed to work with an NSCell. What's more, the
lack of an NSCell means you can't make use of NSMatrix—a subclass of NSControl designed specifically for
managing multi-cell arrays such as radio buttons.

Override the designated initializenifWithFrame:) if you create a subclass of NSControl that performs its own
initialization.
Initializing an NSControl Object

— (id)initWithFrame: (NSRectjrameRect Initializes a new NSControl object frameRectand
attempts to create a corresponding NSCell.

Setting the Control's Cell

+ (ClassgellClass Returnanil; overridden by subclasses.

+ (void)setCellClass(Classjactoryld Implemented by subclasses to set the NSCell class used.
— (id)cell Returns the control's NSCell.

— (void)setCell(NSCell *)aCell Sets the control's NSCell &Cell.

Enabling and Disabling the Control
— (BOOL)sEnabled Returns whether the control reacts to mouse events.

— (void)setEnabled(BOOL)flag Sets whether the control reacts to mouse events.

OpenStep Specification—10/19/94 Classes: NSControl 1-69

Identifying the Selected Cell
— (id)selectedCell

— (int)selectedTag

Setting the Control's Value
— (doublejloubleValue
— (floatfloatValue
— (int)intValue
— (void)setDoubleValue(doublepDouble
— (void)setFloatValue{float)aFloat
— (void)setintValue:(int)anint
— (void)setNeedsDisplay
— (void)setStringValue:(NSString *)aString
— (NSString *ytringValue

Interacting with Other Controls

— (voidtakeDoubleValueFrom(id)sender

— (voidtakeFloatValueFrom:(id)sender

— (voidYtakelntValueFrom: (id)sender

— (voidtakeStringValueFrom:(id)sender

Formatting Text

— (NSTextAlignmen@lignment

— (NSFont *font
— (void)setAlignment:(NSTextAlignmentinode

1-70 Chapter 1: Application Kit

Returns the control’s selected NSCell.

Returns the tag of the control’s selected cell.

Returns the value of the control's selected celldmuale.
Returns the value of the control's selected cellfimt
Returns the value of the control's selected celliat. a
Sets the value of the control's selected cedDouble
Sets the value of the control's selected cedlRimat
Sets the value of the control's selected cedinimt

Set the NeedsDisplay flag.

Sets the value of the control's selected cediString

Returns the value of the control's selected cell as an
NSString.

Sets the receiving NSControl's selected cell to the value
obtained by sendingdoubleValue message tsender

Sets the receiving NSControl's selected cell to the value
obtained by sendingftoatValue message tsender

Sets the receiving NSControl's selected cell to the value
obtained by sendingiatValue message tsender

Sets the receiving NSControl's selected cell to the value
obtained by sendingstringValue message teender

Returns the alignment of text in the control’s cell.
Returns the Font used to draw text in the control’s cell.

Sets the alignment mode of the text in the control's cell to
mode

OpensStep Specification—10/19/94

— (void)setFont(NSFont *fontObject

Sets the Font used to draw text in the control’s cell to
fontObject

— (voidsetFloatingPointFormat:(BOOL)autoRange Sets the display format for floating point values in the

left: (unsignedkftDigits
right: (unsignedjightDigits

Managing the Field Editor
— (BOOL)abortEditing
— (NSText *currentEditor
— (void)validateEditing

Resizing the Control
— (void)calcSize
— (void)sizeToFit

Displaying the Control and Cell
— (void)drawCell: (NSCell *)aCell
— (void)rawCelllnside: (NSCell *)aCell
— (void)selectCell(NSCell *)aCell
— (voidupdateCell:(NSCell *)aCell
— (voidupdateCellinside:(NSCell *)aCell

Target and Action
— (SEL}ction
— (BOOL)isContinuous

— (BOOL)sendAction:(SEL)theAction
to:(id)theTarget

— (int)sendActionOn(intymask
— (void)setAction:(SEL)aSelector
— (void)setContinuous(BOOL)flag

OpenStep Specification—10/19/94

control’s cell

Aborts editing of text displayed by the NSControl.
Returns the object used to edit text in the control.

Validates the user’s changes to editable text.

Recalculates internal size information.

Resizes the control to fit its cell.

RedrawsaCellif it's the control’s cell.
RedrawsaCells inside if it's the control’s cell.
SelectsaaCellif it's the control’s cell.
RedisplaysaCell or marks it for redisplay.

Redisplays the inside afCell or marks it for redisplay.

Returns the NSControl’s action method.

Returns whether the control's NSCell continuously sends

its action.

Has the NSApplication object setiteActionto theTarget

Determines when the action is sent while tracking.

Sets the NSControl’s action methodai®electar

Sets whether the control’s NSCell continuously sends its

action.

Classes: NSControl 1-71

— (voidsetTarget:(id)anObject Sets the NSControl’s target objectaioObject

— (id)target Returns the NSControl's target object.

Assigning a Tag
— (voidsetTag{int)anint Sets the tag of the control’'s NSCellanint

— (int)ttag Returns the tag of the control's NSCell.

Tracking the Mouse

— (voidymouseDown(NSEvent *}heEvent Invoked when the mouse button goes down while the
cursor is within the bounds of the NSControl. This
method highlights the NSControl’'s NSCell and sends it
atrackMouse:inRect:ofView:untiiMouseUp:
message. Whenever the NSCell finishes tracking the
mouse (for example, because the cursor has left the
cell’s bounds), the cell is unhighlighted. If the mouse
button is still down and the cursor reenters the bounds,
the cell is again highlighted and a new
trackMouse:inRect:ofView:untiiMouseUp:
message is sent. This behavior repeats until the mouse
button goes up.

— (BOOL)gnoresMultiClick Indicates whether multiple clicks are ignored.

— (void)setlgnoresMultiClick :(BOOL)flag Sets whether multiple clicks are ignored, accordirftatp

Methods Implemented by the Delegate

NSControl itself doesn’t have a delegate. These delegate methods are detl&@dnitrol.h but are intended for
subclasses, such as NSTextField and NSMatrix, that do have delegates and that allow text editing.

— (BOOL)ontrol: (NSControl *control Sent directly bycontrol to the delegate; returns YES if the
textShouldBeginEditing:(NSText *fieldEditor NSControl should be allowed to start editing the text.

— (BOOL)Xontrol: (NSControl *xontrol Sent directly bycontrol to the delegate; returns YES if the
textShouldEndEditing: (NSText *¥ieldEditor NSControl should be allowed to end its edit session.

— (void)controlTextDidBeginEditing: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSControlTextDidBeginEditingNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

1-72 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (voidxontrolTextDidEndEditing: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSControlTextDidEndEditingNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (void)controlTextDidChange:(NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSControlTextDidChangeNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

OpenStep Specification—10/19/94 Classes: NSControl 1-73

NSCStringText

Inherits From: NSText : NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling, NSignoreMisspelledWords (NSText)
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSCStringText.h

Class Description

The NSCStringText class declares the programmatic interface to objects that manage text using eight-bit character
encodings. The encoding is the same as the default C string encoding provdeééalit" StringEncoding in the

NSString class. NSCStringText can be used in situations where backwards compatibility with the detailed
interfaces of the NEXTSTEP Text object is important. Applications that can use the interface of NSText should do

SO.

The

NSCStringText class is unlike most other classes in the Application Kit in its complexity and range of features.

One of its design goals is to provide a comprehensive set of text-handling features so that you'll rarely need to create
a subclass. An NSCStringText object can (among other things):

Control the color of its text and background.

Control the font and layout characteristics of its text.

Control whether text is editable.

Wrap text on a word or character basis.

Write text to, or read it from, a file, as either RTF or plain ASCII data.
Display graphic images within its text.

Communicate with other applications through the Services menu.
Let another object, the delegate, dynamically control its properties.
Let the user copy and paste text within and between applications.
Let the user copy and paste font and format information between NSCStringText objects.
Let the user check the spelling of words in its text.

Let the user control the format of paragraphs by manipulating a ruler.

NSCStringText can deal only with eight-bit characters. Therefore, it is not able to deal with Unicode character sets,

and

1-74

NSCStringText can't be fully internationalized.

Chapter 1: Application Kit OpensStep Specification—10/19/94

Plain and Rich NSCStringText Objects

When you create an NSCStringText object directly, by default it allows only one font, line height, text color, and
paragraph format for the entire text. You can set the default font used by new NSCStringText instances by sending
the NSCStringText class objectetDefaultFont: message. Once an NSCStringText object is created, you can alter

its global settings using methods suclsetsont; setLineHeight:, setTextGray:, andsetAlignment:. For

convenience, such an NSCStringText object will be caligldia NSCStringText object.

To allow multiple values for these attributes, you must send the NSCStringText obj¢Ric Text:YES
message. An NSCStringText object that allows multiple fonts also allows multiple paragraph formats, line heights,
and so on. For convenience, such an NSCStringText object will be caltdedNSCStringText object.

A rich NSCStringText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words
are supported: On input, an NSCStringText object ignores any control word it doesn't recognize; some of those it
canread and interpret it doesn't write out. Refer to the class description of NSText for a list of the RTF control words
that an NSCStringText object recognizes.

Note: An NSCStringText object writes eight-bit characters in the default C string encoding, which differs somewhat
from the ANSI character set.

In an NSCStringText object, each sequence of characters having the same attributes isucalfeglain

NSCStringText object has only one run for the entire text. A rich NSCStringText object can have multiple runs.
Methods such asetSelFont andsetSelColor:let you programmatically modify the attributes of the selected

sequence of characters in a rich NSCStringText object. As discussed below, the user can set these attributes using
the Font panel and the ruler.

NSCStringText objects are designed to work closely with various objects and services. Some of these—such as the
delegate or an embedded graphic object—require a degree of programming on your part. Others—such as the Font
panel, spelling checker, ruler, and Services menu—take no effort other than deciding whether the service should be
enabled or disabled. The following sections discuss these interrelationships.

Notifying the NSCStringT ext Object's Delegate

Many of an NSCStringText object's actions can be controlled through an associated object, the NSCStringText
object's delegate. If it implements any of the following methods, the delegate receives the corresponding message
at the appropriate time:

textWillResize:
textDidResize:oldBounds:
textWillSetSel:toFont:
textWillConvert:fromFont:toFont:
textWillStartReadingRichText:
textWillFinishReadingRichText:
textWillWrite:
textDidRead:paperSize:

So, for example, if the delegate implementstéx@WillConvert:fromFont:toFont: method, it will receive

notification upon the user's first attempt to change the font of the text. Moreover, depending on the method's return
value, the delegate can either allow or prohibit changes to the text. See “Methods Implemented by the Delegate”.
The delegate can be any object you choose, and one delegate can control multiple NSCStringText objects.

OpenStep Specification—10/19/94 Classes: NSCStringText1-75

Adding Graphics to the Text

A rich NSCStringText object allows graphics to be embedded in the text. Each graphic is treated as a single
(possibly large) “character”: The text's line height and character placement are adjusted to accommodate the
graphic “character.” Graphics are embedded in the text in either of two ways: programmatically or directly through
user actions. The programmatic approach is discussed first.

In the programmatic approach, you add an object—generally a subclass of NSCell—to the text. This object
manages the graphic image by drawing it when appropriate. Although NSCell subclasses are commonly used, the
only requirement is that the embedded object responds to these messages—see “Methods Implemented by an
Embedded Graphic Object” for more information:

highlight:withFrame:inView:
drawWithFrame:inView:
trackMouse:inRect:ofView:untiiMouseUp:
cellSize:

readRichText:forView:

richTextforView:

You place the graphic object in the text by sending the NSCStringText obggtaeeSelWithCell: message.

An NSCStringText object displays a graphic in its text by sending the managing object a

drawWithFrame:inView: message. To record the graphic to a file or to the pasteboard, the NSCStringText object
sends the managing objeatieh TextforView: message. The object must then write an RTF control word along

with any data (such as the path of a TIFF file containing its image data) it might need to recreate its image. To
reestablish the text containing the graphic image from RTF data, an NSCStringText object must know which class
to associate with particular RTF control words. You associate a control word with a class object by sending the
NSCStringText class objectragisterDirective:forClass: message. Thereafter, whenever an NSCStringText

object finds the registered control word in the RTF data being read from a file or the pasteboard, it will create a new
instance of the class and send the objeetdRichText:forView: message.

An alternate means of adding an image to the text is for the user to drag an EPS or TIFF file icon directly into an
NSCStringText object. The NSCStringText object automatically creates a graphic object to manage the display of
the image. This feature requires a rich NSCStringText object that has been configured to receive dragged images—
see thesetimportsGraphics: method of the NSText class.

Images that have been imported in this way can be written as RTFD documents. Programmatic creation of RTFD
documents is not supported in this version of OpenStep. RTFD documents use a file package, or directory, to store
the components of the document (the “D” stands for “directory”). The file package has the name of the document
plus a “.rtfd” extension. The file package always contains a file called TXT.rtf for the text of the document, and one
or more TIFF or EPS files for the images. An NSCStringText object can transfer information in an RTFD document
to a file and read it from a file—see thgteRTFDToFile:atomically: andreadRTFDFromFile: methods in the

NSText methods.

1-76 Chapter 1: Application Kit OpensStep Specification—10/19/94

Cooperating with Other Objects and Services

NSCStringText objects are designed to work with the Application Kit's font conversion system. By default, an
NSCStringText object keeps the Font panel updated with the font of the current selection. It also changes the font
of the selection (for a rich NSCStringText object) or of the entire text (for a default NSCStringText object) to reflect
the user's choices in the Font panel or menu. To disconnect an NSCStringText object from this service, send it a
setUsesFontPanel:NOnessage (this method is actually implemented by NSText—the superclass).

If an NSCStringText object is a subview of an NSScrollView, it can cooperate with the NSScrollView to display
and update a ruler that displays formatting information. The NSScrollView retiles its subviews to make room for
the ruler, and the NSCStringText object updates the ruler with the format information of the paragraph containing
the selection. ThtoggleRuler: method controls the display of this ruler. Users can modify paragraph formats by
manipulating the components of the ruler.

By means of the Services menu, an NSCStringText object can make use of facilities outside the scope of its own
application. By default, an NSCStringText object registers with the services system that it can send and receive RTF
and plain ASCII data. If the application containing the NSCStringText object has a Services menu, a menu item is
added for each service provider that can accept or return these formats. To prevent NSCStringText objects from
registering for services, send the NSCStringText class objegcardeFromServicesMenu:YESnessage before

any NSCStringText objects are created.

Coordinates and sizes mentioned in the method descriptions below are in PostScript units—1/72 of an inch.

Initializing a New NSCStringT ext Object

— (id)initwithFrame: (NSRectjrameRect Returns a new NSCStringText objecframeRect
text:(NSString *heText initialized with the contents dheTextand withmode
alignment:(NSTextAlignmentinode alignment.

Modifying the Frame Rectangle

— (voidyesizeTextWithOldBounds:(NSRectpldBounds
maxRect(NSRectinaxRect Used by the NSCStringText object to resize and redisplay
itself.

Laying Out the Text

— (int)calcLine Calculates line breaks.
— (BOOL)XhangeTabStopAt(float)oldX Resets the position of the specified tab stop.
to: (float)newX
— (BOOL)XharWrap Returns whether extra long words are wrapped.
— (void *)defaultParagraphStyle Returns the default paragraph style.
— (floatdescentLine Returns distance from base line to bottom of line.

OpenStep Specification—10/19/94 Classes: NSCStringText1-77

— (void)getMarginLeft: (float *)leftMargin
right: (float *)rightMargin
top: (float *)topMargin
bottom: (float *)bottomMargin

— (void)getMinWidth: (float *)width
minHeight: (float *)height
maxWidth: (float)widthMax
maxHeight:(float)heightMax

— (float)ineHeight

— (void *)paragraphStyleForFont:(NSFont *¥ontld
alignment:(int)alignment

— (void)setCharWrap:(BOOL)flag

— (voidsetDescentLine(float)value

— (voidsetLineHeight:(floatvalue

— (void)setMarginLeft: (float)eftMargin
right: (float)rightMargin
top: (floattopMargin
bottom: (float)pbottomMargin

— (void)setNoWrap

— (voidsetParagraphStyle(void *)paraStyle

Gets by reference the dimensions of margins around the
text.

Given thewidthMaxandheightMax calculates the
minimum area needed to display the text and returns
widthandheightby reference.

Returns height of a line of text.

Recalculates the paragraph style based on nevidiotid
andalignment

Sets whether extra long words are wrapped.

Sets the distance from the base line to the bottom of line to
value

Sets the height of a line of textialue

Adjusts the margins around the text.

Disables word wrap.

Sets the default paragraph style for the entire text.

— (BOOL)setSelProp(NSParagraphProperppperty

to:(float)value

Reporting Line and Position
— (int)lineFromPosition:(int)position

— (int)positionFromLine: (int)line

Reading and Writing Text
— (void¥inishReadingRichText
— (NSTextBlock *firstTextBlock

1-78 Chapter 1: Application Kit

Sets a paragragiropertyfor one or more selected
paragraphs tgalue

Converts charactgrositionto line number.

Convertdine number to character position.

Sent after the NSCStringText object reads RTF data.

Returns a pointer to the first text block in the
NSCStringText object.

OpensStep Specification—10/19/94

— (NSRectparagraphRect:(int)paraNumber

start: (int *) startPos
end:(int *)endPos

— (void)startReadingRichText

Editing Text
— (void)lear:(id)sender
— (voidhideCaret
— (voidshowCaret

Managing the Selection

— (void)getSelectionStart(NSSelPt *ptart
end:(NSSelPt *gnd

— (voidyeplaceSel(NSString *)aString

— (voidyeplaceSel(NSString *aString
length:(int)length

— (voidyeplaceSel(NSString *aString
length:(int)length
runs:(NSRunArray *jnsertRuns

— (void)scrollSelToVisible
— (void)selectError
— (void)selectNull

— (void)setSelectionStart(int)start
end:(int)end

— (void)selectText{id)sender

Setting the Font
+ (NSFont *defaultFont

+ (void)setDefaultFont(NSFont *anObject

— (void)setFont(NSFont *fontObj

paragraphStyle:(void *)paragraphStyle

OpenStep Specification—10/19/94

Returns the location and size of a paragraph identified by
paraNumber also returns the starting and ending
character positions by reference.

Sent before the NSCStringText object begins reading RTF
data.

Deletes the selected text.
Removes the caret from the text display.

Displays the previously hidden caret in the text display.

Gets information (by reference) relating to the starting and
ending character positions of the selection.

Replaces the selection widlstring

Replaces the selection widgngthbytes ofaString

Replaces the selection wigngthbytes ofaString
insertRungds a pointer to the current run in the run
array.

Brings the selection within the frame rectangle.
Selects all the text.
Deselects the current selection.

Selects text from charactestart throughend

Makes the receiver the first responder and selects all text.

Returns the default NSFont object for NSCStringText
objects.

MakesanObjectthe default NSFont object for
NSCStringText objects.

Sets the NSFont object and paragraph style for all text.

Classes: NSCStringText1-79

— (voidsetSelFont(NSFont *fontObj

— (void)setSelFont(NSFont *fontObj
paragraphStyle:(void *)paragraphStyle

— (void)setSelFontFamily(NSString *fontName
— (voidsetSelFontSizgfloat)size
— (voidsetSelFontStyle{NSFontTraitMaskyaits

Finding Text

— (BOOLYindText: (NSString *YextPattern
ignoreCase(BOOL)ignoreCase
backwards:(BOOL)backwards
wrap: (BOOL)wrap

Modifying Graphic Attributes
— (NSCaolor *yunColor: (NSRun *yun
— (NSColor *gelColor
— (void)setSelColor{NSColor *)color

Reusing an NSCStringText Object

— (void)renewFont:(NSFont *newFontObj
text:(NSString *newText
frame:(NSRecthewFrame
tag:(int)newTag

— (void)yenewFont:(NSString *newFontName
size{floatinewFontSize
style:(int)newFontStyle
text:(NSString *newText
frame:(NSRecthewFrame
tag:(int)jnewTag

— (voidyenewRuns{NSRunArray *newRuns
text: (NSString *newText
frame: (NSRecthewFrame
tag:(intynewTag

1-80 Chapter 1: Application Kit

Sets the NSFont object for the selection.

Sets the NSFont object and paragraph style for the
selection.

Sets the font family for the selection.
Sets the font size for the selection.

Sets the font style for the selection.

Searches faiextPatternin the text, starting at the insertion
point.ignoreCasenstructs the search to disregard case;
backwardsmeans search backwareégap means that
when the search reaches the beginning or end of the text
(depending on the direction), it should continue by
wrapping to the end or beginning of the text.

Returns the color of the specified text run.
Returns the color of the selected text.

Sets the color of the selected text.

Resets the NSCStringText object to draw different text
newTexbh font newFontldwithin framenewFrame

Resets the NSCStringText object to draw different text
newTeit the font identified bypewFontName
newFontSjzndnewFontStyleDrawing occurs within

framenewFrame

Resets the NSCStringText object to draw different text
newTexh newFrame

OpensStep Specification—10/19/94

Setting Window Attributes
— (BOOL)isRetainedWhileDrawing

— (void)setRetainedWhileDrawing(BOOL)flag

Assigning a Tag
— (void)setTag{int)anint

— (intitag

Handling Event Messages
— (void)obecomeKeyWindow
— (void)ymoveCaret:(unsigned shortheKey
— (voidyesignKeyWindow

Displaying Graphics within the Text

+ registerDirective:(NSString *directive
forClass:class

— (NSPointlocationOfCell: (NSCell *)cell
— (voidyeplaceSelWithCell(NSCell *)cell

— (void)setLocation(NSPointprigin
ofCell:(NSCell *)cell

Using the Services Menu and the Pasteboard

+ excludeFromServicesMenuBOOL)flag

Returns whether a retained window is used for drawing.

Allows use of a retained window when drawing.

Makesanintthe NSCStringText object's tag.
Returns the NSCStringText object’s tag.

Activates the caret if selection has width of 0.
Moves the caret in response to arrow keys.

Deactivates the caret.

Associates an RTF control wordirective with class
(usually NSCell and subclasses); objects of this class
are encoded through RTF control words in
NSCStringText objects.

Returns the location afell.
Replaces the selection with cell objeetl.

Sets theorigin point ofcell.

Controls whether NSCStringText objects can register for
services.

— (BOOL)YeadSelectionFromPasteboardNSPasteboard ppoard

Replaces the selection with data from pastebphosrd

— (id)validRequestorForSendType(NSString *sendType

returnType: (NSString *YyeturnType

Determines which Service menu items are enabled.

— (BOOL)writeSelectionToPasteboard{NSPasteboard ppoard

types:(NSArray *types

OpenStep Specification—10/19/94

Copies the selection to pastebopbard

Classes: NSCStringText1-81

Setting Tables and Functions
— (const NSFSM HreakTable
— (const unsigned charcharCategoryTable
— (NSCharFilterFuncharFilter
— (const NSFSM #HlickTable
— (NSTextFunagjrawFunc
— (const unsigned charpdstSelSmartTable
— (const unsigned charpleSelSmartTable
— (NSTextFungcanFunc
— (void)setBreakTable{const NSFSM *aTable

Returns the table defining word boundaries.
Returns the table defining character categories.
Returns the current character filter function.
Returns the table defining double-click selection.
Returns the current draw function.

Returns cut and paste table for right word boundary.
Returns cut and paste table for left word boundary.
Returns the current scan function.

Sets the table defining word boundaries.

— (void)setCharCategoryTable{const unsigned char&Yable

— (void)setCharFilter: (NSCharFilterFun@Function

— (void)setClickTable:(const NSFSM *aTable

— (void)setDrawFunci(NSTextFunciFunction

Sets the table defining character categories used in the word
wrap or click tables.

MakesaFunctionthe character filter function.
Sets the table defining double-click selection.

MakesaFunctionthe function that draws the text.

— (void)setPostSelSmartTablgiconst unsigned charé&Yable

Sets the cut and paste table for right word boundary.

— (void)setPreSelSmartTablefconst unsigned chardJable

— (void)setScanFunc{NSTextFuncdFunction
— (void)setTextFilter: (NSTextFilterFun@Function
— (NSTextFilterFundextFilter

Printing

— (voidladjustPageHeightNew(float *)newBottom
top: (float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

1-82 Chapter 1: Application Kit

Sets the cut and paste table for left word boundary.
MakesaFunctionthe scan function.
MakesaFunctionthe text filter function.

Returns the current text filter function.

Assists with automatic pagination of text.

OpensStep Specification—10/19/94

Implemented by an Embedded Graphic Object
— (NSSizegellSize Embedded cell returns its size.

— (void)drawWithFrame: (NSRectgellFrame Embedded object draws itself, including frame, within
inView: (NSView *)controlView cellFramein controlView

— (voidighlight: (BOOL)flag

Embedded object highlights or unhighlights itself with
withFrame: (NSRectellFrame cellFrameof controlView depending on the value of
inView: (NSView *)controlView flag.

— (voidyeadRichText:(NSString *tringObject Embedded object reads its RTF representation from
forView: (NSView *)view stringObjectand initializes itself.

— (NSString *yichTextForView: (NSView *)view Embedded object stores its RTF representation within view

as a string object and returns it.

— (BOOL)YrackMouse:(NSEvent *theEvent Embedded object implements this method to track mouse
inRect:(NSRectkellFrame

movement within tracking rectangles{lFrameé and to
ofView: (NSView *)controlView detect mouse-up evenintiiMouseU).
untilMouseUp: (BOOL)untiiMouseUp

Implemented by the Delegate

— (voidtextDidRead:(NSCStringText *)extObject

Lets the delegate review paper size.
paperSize(NSSizepaperSize

— (NSRectlextDidResize(NSCStringText *extObject

oldBounds:(NSRectpldBounds Reports size change to delegate.

— (NSFont *jextWillConvert: (NSCStringText *)extObject
fromFont: (NSFont *font Lets delegate intercede in selection’s font change.
toFont: (NSFont *font

— (voidtextWillFinishReadingRichText: (NSCString Text *extObject
Informs delegate that the NSCStringText object finished
reading RTF data.
— (voidtextWillResize:(NSCStringText HextObject

Informs delegate of impending size change.

— (void)textWillSetSel:(NSCStringText *JextObject

toFont: (NSFont *font Lets delegate intercede in the updating of the Font panel.

— (voidtextWillStartReadingRichText: (NSCStringText *)extObject

Informs delegate that NSCStringText object will read RTF
data.

— (NSSizedextWillWrite: (NSCStringText *extObject

Lets the delegate specify paper size.

OpenStep Specification—10/19/94 Classes: NSCStringText1-83

Compatibility Methods

- (NSCsStringTextInternalState ¢ptringTextinternalState
Returns a structure that represents the instance variables of

the NSCStringText object. The structure is defined in
appkit/NSCStringText.h, and in the “Types and
Constants” section of the Application Kit
documentation. Note that this method is provided for
applications that really must depend on changing the
values of an NSCStringText object’s instance variables.

1-84 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSCursor

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Inherits From: AppKit/NSCursor.h

Class Description

An NSCursor holds an image that the window system can display for the cursor. An NSCursor is initialized with
an NSImage object (which can subsequently be replaced by sending the NS&etisnage:message). To make

the window system display a particular image as the current cursor, simply sstmdegsage to the NSCursor
instance associated with that image.

For automatic cursor management, an NSCursor can be assigned to a cursor rectangle within a window. When the
window is key and the user moves the cursor into the rectangle, the NSCursor becomes the current cursor. It ceases
to be the current cursor when the cursor leaves the rectangle. The assignment is made using NSView's
addCursorRect:cursor: method, usually insiderasetCursorRectsmethod:

- (void)resetCursorRects

{

[self addCursorRect:someRect cursor:theNSCursorObject];

}

This is the recommended way of associating a cursor with a particular region inside a window. However, the
NSCursor class provides two other ways of setting the cursor:

* The class maintains its own stack of cursors. Pushing an NSCursor instance on the stack sets it to be the
current cursor. Popping an NSCursor from the stack sets the next NSCursor in line, the one that’s then at the
top of the stack, to be the current cursor.

» An NSCursor can be made the owner of a tracking rectangle and told to set itself when it receives a
mouse-entered or mouse-exited event.

The Application Kit provides two ready-made NSCursor instances: the standard arrow cursor, and the I-beam
cursor that's displayed over editable or selectable text. These can be retrieved with the clasamatr@aisor
andIBeamCursor, respectively. There’'s no NSCursor instance for the wait cursor. The wait cursor is displayed
automatically by the system, without any required program intervention.

Initializing a New NSCursor Object

— (id)initwithimage: (NSImage *hewlmage Initializes a new NSCursor object witlewlmage

OpenStep Specification—10/19/94 Classes: NSCursor 1-85

Defining the Cursor

— (NSPointhotSpot

— (NSImage *Image
— (void)setHotSpot(NSPointspot

— (voidsetimage(NSImage *hewlmage

Setting the Cursor
+ (void)hide
+ (void)pop
+ (void)setHiddenUntiiMouseMoves(BOOL)flag;
+ (void)unhide
— (BOOL)sSetOnMouseEntered
— (BOOL)sSetOnMouseEXxited
— (void)ymouseEntered(NSEvent *1heEvent

— (void)mouseExited(NSEvent *fheEvent

— (void)yop

— (void)ypush

— (void)set
— (voidsetOnMouseEntered{BOOL)flag
— (voidsetOnMouseExited(BOOL)flag

Getting the Cursor
+ (NSCursor *arrowCursor
+ (NSCursor *gurrentCursor

+ (NSCursor *)BeamCursor

1-86 Chapter 1: Application Kit

Returns the point on the cursor that’s aligned with the
mouse.

Returns the NSImage object that has the cursor image.
Sets the point on the cursor that’s aligned with the mouse.

Makesnewlmagehe NSImage object that supplies the
cursor image.

Hides the cursor.

Restores the previous cursor.

Hides cursor wheflag is YES; reveals it otherwise.
Shows the cursor.

Returns YES itmouseEntered:sets cursor.
Returns YES ifmouseExited:sets cursor.

Responds to a mouse-entered event by setting the cursor if
setOnMouseEnteredwas sent.

Responds to a mouse-exited event by setting the cursor if
setOnMouseExitedwas sent.

Removes the topmost NSCursor object from the cursor
stack, and makes the next NSCursor down the current
cursor.

Puts the receiving NSCursor on the cursor stack and sets it
to be the current cursor.

Sets the NSCursor to be the current cursor.
Determines whethenouseEntered:sets cursor.

Determines whethanouseExited:sets cursor.

Returns an arrow cursor.
Returns the current cursor.

Returns an I-beam cursor.

OpenStep Specification—10/19/94

NSCustomimageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSCustomlimageRep.h

An NSCustomlmageRep is an object that uses a delegated method to render an image. When called upon to produce
the image, it sends a message to its delegate to have the method performed.

Like most other kinds of NSImageReps, an NSCustomlmageRep is generally used indirectly, through an NSimage
object. An NSImage must be able to choose between various representations of a given image. It also needs to
provide an off-screen cache of the appropriate depth for any image it uses. It determines this information by
querying its NSImageReps.

Thus to work with an NSImage, an NSCustomimageRep must be able to provide some information about its image.
Use the following methods, inherited from the NSIimageRep class, to set these attributes of the
NSCustomimageRep:

setSize:
setColorSpaceName:
setAlpha:
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Initializing a New NSCustomimageRep

— (id)initwithDrawSelector: (SEL)aSelector Initializes a new instance so that it delegates the
delegate(id)anObject responsibility for drawing tanObject Whenthe
NSCustomlmageRep receivedraw message, it sends
anaSelectormessage tanObject

Identifying the Object
— (id)delegate Returns the delegate.

— (SELdrawSelector Returns the associated draw method selector.

OpenStep Specification—10/19/94 Classes: NSCustomimageRep-87

NSDataLink

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSDataLink.h

Class Description

An NSDataLink object (odata link defines a single link between a selection in a source document and a
dependent, dynamically updated selection in a destination document.

A data link is typically created when linkable data is copied to the pasteboard. First, an NSSelection object
describing the data is created. Then a link to that selection is created using
initLinkedToSourceSelection:managedBy:supportingTypes: The link can then be written to the pasteboard
usingwriteToPasteboard: Usually, after the link has been written to the pasteboard (or saved to a file using
writeToFile:) the link is freed because it's generally of no further use to the source application.

Once the data and link have been written to the pasteboard, they can be added to a destination document by an
object that can respond to a message to Paste and Link. The object responding to this message will paste the data
as usual. The destination application will then read the link from the pasteboaruhitigiithPasteboard:, create

an NSSelection describing the linked data within the destination document, and will add the link by sending
addLink:at: to the document’s NSDataLinkManager object (also knowndasealink managepr simplylink

managey.

When the link is added to the destination document’s link manager, it becolestiation link At that time, the
data link’s object establishes a connection with the source document’s link manager, which automatically creates a
source linkin the source application; the source link refers to the source selection.

Alink that isn’t managed by a link manager tsraken link (Both source and destination links have link managers.)

All links are broken links when they are created. Links can be explicitly broken (ensuring that they cause no
updates) using thereak method. Broken links (that aren’t former source links) can be hooked up as destination
links with theaddLink:at: method. The disposition of a link (destination, source, or broken) can be retrieved with
thedisposition method. Most of the messages defined by the NSDatalLink class can be sent to a link of any
disposition, but some only make sense when sent to a link with a specific disposition; these are so noted in their
method descriptions.

Links of all dispositions (except links to files) maintain an NSSelection object referring to the link’s selection in
the source document; this selection is returned bgdbeceSelectiormethod. Links directly to files represent
entire files rather than selections in a document; these links are creatitlitkedToFile: and have no source
selection.

Source and destination links also maintain an NSSelection describing the location of the data in the destination
document; this selection is returned by destinationSelectionmethod.

1-88 Chapter 1: Application Kit OpenStep Specification—10/19/94

See the NSSelection class description for more information on NSSelection objects.

Initializing a Link
— (id)initLinkedToFile: (NSString *¥filename Initializes a new instance correspondindiename

— (id)initLinkedToSourceSelection{NSSelection *3election

managedBy(NSDatalLinkManager *)linkManager

supportingTypes:(NSArray *)newTypes Initializes a newly allocated instance corresponding to a
selection in the source documeetection
linkManageris the source document's link manager.
newTypess a set of types thahkManagefs delegate is
willing to provide when a destination of the link
requests the data describeddejection

— (id)initwithContentsOfFile :(NSString *filename Initializes a new instance frofilename

— (id)initWithPasteboard: (NSPasteboard pasteboard
Initializes a new instance fropasteboard

Exporting a Link

— (BOOL)saveLinkin: (NSString *directoryName Saves the link in a filename provided by the user; the
NSSavePanel’s initial directory is directoryName

— (BOOL)writeToFile: (NSString *filename Writes the link into the filéilename returning NO if the
file can’'t be written.

— (voidwriteToPasteboard:(NSPasteboard pasteboard
Writes the link onto the pastebogrdsteboard

Information about the Link

— (NSDataLinkDispositiorisposition Identifies the link’s type.
— (NSDataLinkNumbelinkNumber Returns the link’s number.
— (NSDataLinkManager thanager Returns the link’s manager.

Information about the Link's Source

— (NSDate *JastUpdateTime Returns the last time the link was updated.

— (BOOL)openSource Opens the source document of the link and makes the
source selection visible.

— (NSString *sourceApplicationName Returns the name of the application that owns the source
document.

OpenStep Specification—10/19/94 Classes: NSDatalLink 1-89

— (NSString *sourceFilename
— (NSSelection §ourceSelection

— (NSArray *types

Information about the Link’'s Destination

— (NSString *festinationApplicationName

— (NSString *JlestinationFilename

— (NSSelection HJestinationSelection

Changing the Link
— (BOOL)Yreak
— (void)noteSourceEdited

Returns the file name of the source document.
Returns the source selection.

Returns the types that the source document can provide.

Returns the name of the application that owns the
destination document.

Returns the file name of the destination document.

Returns the destination selection.

Breaks the link

Informs a source link that the data referred to by its source
selection has changed.

— (void)setUpdateMode(NSDataLinkUpdateMode)ode

— (BOOL)updateDestination

— (NSDataLinkUpdateModapdateMode

1-90 Chapter 1: Application Kit

Sets the link’'s update modernwode

Updates the data referred to by the link’s destination
selection with the contents referred to by the source
selection.

Returns the link’s update mode.

OpenStep Specification—10/19/94

NSDatalLinkManager

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSDataLinkManager.h

Class Description

An NSDataLinkManager object (also known ataga link manageor simplylink managey manages data linked

from and into a document through NSDataLink objects. NSDataLink objedatéolinkg provide a link between

a selection in a source document and a dependent, dynamically updated selection in a destination document. When
a user does a Paste and Link command in the destination document, the link manager creates the link in response
to aaddLink:at: message. When this link is added to the destination document, it makes a connection with the
source document’s link manager, which creates a source link in the source application.

If an application supports data linking, a link manager should be instantiated for every document the application
creates. A link manager must be assigned a delegate that assists it in keeping the document up to date; this delegate
must implement some or all of the methods listed in the “Methods Implemented by the Delegate” section of this
class specification. In addition, the delegate must keep the link manager informed of the state of the document,
sending it messages whenever the document is edited, saved, or otherwise altered.

Only applications that support continuously updating links need to be aware of when source links are created; these
applications can have the delegate of the destination document’s link manager return YES in response to a
dataLinkManagerTracksLinksIndividually: message, and then respond to

dataLinkManager:startTrackingLink: messages to receive notifications that source links are created.

For more information about NSDataLink objects, see the NSDataLink class description. See the NSSelection class
description for more information on NSSelection objects.

Initializing and Freeing a Link Manager

— (id)initwithDelegate:(id)anObject Initializes and returns a newly allocated instance,
designatinganObjectas the delegate.
— (id)initwithDelegate: (id)anObject Initializes and returns a newly allocated instance
fromFile: (NSString *path designatinganObjectas the delegate. The document's

file is specified by the full pathath.

OpenStep Specification—10/19/94 Classes: NSDatalLinkManager1-91

Adding and Removing Links

— (BOOL)addLink: (NSDataLink *Jink Adds the linKink to the document, indicating that the data
at: (NSSelection *3election in the document described bglectionis dependent
upon the link.

— (BOOL)addLinkAsMarker: (NSDataLink *Jink Incorporatedink into the document as a marker in the
at:(NSSelection *3election location of the destination document described by
selection

— (NSDataLink *addLinkPreviouslyAt: (NSSelection *pldSelection
fromPasteboard:(NSPasteboard pasteboard Creates and adds a new destination link corresponding to
at:(NSSelection *$election the same source data as the link described by the
destination selectioaldSelectiorwith the new link's
destination selection provided selectionithe
document's links must have been written to the
pasteboarghasteboard.

— (void)oreakAllLinks Breaks all the destination links in the document.

— (voidwriteLinksToPasteboard:(NSPasteboard pasteboard
Writes all the link manager’s links fmasteboard

Informing the Link Manager of Document Status

— (void)hoteDocumentClosed Informs link manager that document has been closed.
— (void)noteDocumentEdited Informs link manager that document has been edited.
— (voidnoteDocumentReverted Informs link manager that changes have been reverted.
— (voidhoteDocumentSaved Informs link manager that document has been saved.

— (void)noteDocumentSavedAgNSString *path Informs link manager that document has been saved in the
file specified by the full pathnanpath

— (voidnoteDocumentSaved TqNSString *path Informs link manager that document has been saved in the
file specified by the full pathnanpath

Getting and Setting Information about the Link Manager

— (id)delegate Returns the data link manager’s delegate.

— (BOOL)XelegateVerifiesLinks Returns YES if delegate is asked to verify updates.

— (NSString *jilename Returns the filename for the link manager’'s document.

— (BOOL)interactsWithUser Tells whether the link manager displays panels if link errors
occur.

1-92 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (BOOL)sEdited Returns YES if the document was edited since the last save.

— (voidsetDelegateVerifiesLinks(BOOL)flag Sets whether the delegate is asked to verify updates.
— (void)setinteractsWithUser:(BOOL)flag Sets whether the link manager displays panels if link errors
occur.

Getting and Setting Information about the Manager’ s Links
— (BOOL)areLinkOutlinesVisible Returns YES if outlines are visible.
— (NSEnumerator tjestinationLinkEnumerator Returns an enumerator of the destination’s source links.

— (NSDataLink *yestinationLinkWithSelection:(NSSelection *jlestSel
Returns the destination link for the selecti@stSel

— (void)setLinkOutlinesVisible:(BOOL)flag Sets whether outlines are visible.

— (NSEnumerator SourceLinkEnumerator Returns an enumerator of the receiver’s source links.

Methods Implemented by the Delegate

— (BOOL)copyToPasteboard{NSPasteboard pasteboard

at:(NSSelection *3election Implemented by the link manager's delegate to supply the

cheapCopyAllowed(BOOL)flag source data described bglectionon the pasteboard
pasteboardlf flagis YES, the system guarantees that
no events will be processed by the application before
the delegate is requested to provide the specified data;
in this case, the application doesn’t necessarily have to
write any data representations to the pasteboard. This
method should return YES upon success, or NO if the
selection can’t be resolved.

— (void)ataLinkManager: (NSDataLinkManager ender
didBreakLink: (NSDataLink *)ink Informs the delegate that the destination link was
broken and thus data based on the link's destination
selection will no longer be updated.

— (BOOL)YataLinkManager: (NSDataLinkManager sender
isUpdateNeededForLink{NSDataLink *)ink Returns YES if the source data identifiedini's source
selection has been modified since the link's last update
time.

— (voiddataLinkManager: (NSDataLinkManager §ender
startTrackingLink: (NSDataLink *)ink Informs the delegate that a destination document has
established a data liniak to the link manager's
document and is tracking it.

OpenStep Specification—10/19/94 Classes: NSDatalLinkManager1-93

— (voiddataLinkManager: (NSDataLinkManager yender
stopTrackingLink: (NSDataLink *Jink Informs the delegate that a destination is no longer tracking
the source linkink.

— (void)dataLinkManagerCloseDocument(NSDataLinkManager §ender
Closes documents opened without the user interface.

— (void)ataLinkManagerDidEditLinks: (NSDataLinkManager ender
Informs the delegate that link data has been modified; the
delegate should use this notification to mark the
document as edited.

— (voiddataLinkManagerRedrawLinkOutlines: (NSDataLinkManager sender
Directs the delegate to redraw objects with link outlines.

— (BOOL)ataLinkManagerTracksLinksIndividually: (NSDataLinkManager §ender
Returns whether the receiver is willing to track links

individually.
— (BOOL)mportFile: (NSString *¥ilename Imports the fildilenameat the destination described by
at:(NSSelection *3election selectiarReturns YES upon success, or NO if the

selection can’t be resolved.

— (BOOL)asteFromPasteboardiNSPasteboard pasteboard
at:(NSSelection *$election Pastes the updated data that has been made available on
pasteboardThe destination for the data is described by
selectionwhich was supplied to the link manager as an
argument to theddLink:at: method. Returns YES
upon success, or NO if the selection can't be resolved.

— (BOOL)showSelection(NSSelection *3election Shows the source data for the specified selesttettion
Returns YES upon success, or NO if the selection can't
be resolved.

— (NSWindow *windowForSelection{NSSelection *$election
Returns the NSWindow object for the givaglection or
nil if the selection can't be resolved.

1-94 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSDataLinkPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObiject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSDataLinkPanel.h

Class Description

An NSDataLinkPanel is an NSPanel that allows the user to inspect data links. The NSDataLinkPanel functions
primarily by sending messages to the current data link manager (representing the current document) and to the
current link (representing the current selection if it's based on a data link). Thus, the panel should be informed, by
asetLink:manager:isMultiple: message, any time the selection changes or a document is created or activated.
Since the selection may need to be tracked even before the panel is created, this message can be sent to either the
NSDatalLinkPanel class or the shared instance.

The NSDataLinkPanel is generally displayed using NSApplicatandlsrFrontDataLinkPanel: method. An
application’s sole instance of NSDataLinkPanel can be accessed wsthatieelDatalinkPanelmethod.

Initializing

+ (NSDataLinkPanel sharedDataLinkPanel Initializes and returns the shared NSDataLinkPanel object.

Keeping the Panel Up to Date

+ (void)getLink: (NSDataLink **)link Gets information about the NSDatalLinkPanel’s currently
manager(NSDataLinkManager *jnkManager selected link; returns the link Imk, the link manager
isMultiple: (BOOL *)flag in linkManager and the multiple selection statudlamg.

+ (void)setLink: (NSDataLink *)ink Informs the receiver of the current document and selection
manager(NSDataLinkManager tinkManager usinglink as the currently selected link and
isMultiple: (BOOL)flag linkManageras the current link managélagis YES if

the panel will indicate that more than one link is
selected. Returrself.

— (void)getLink: (NSDataLink **)link Gets information about the NSDataLinkPanel’s currently
manager(NSDataLinkManager *fjnkManager selected link; returns the link limk, the link manager
isMultiple: (BOOL *)flag in linkManager and the multiple selection statudlam.

OpenStep Specification—10/19/94 Classes: NSDatalLinkPanel 1-95

— (void)setLink: (NSDataLink *)ink Informs the receiver of the current document and selection
manager{NSDataLinkManager tihkManager usinglink as the currently selected link and
isMultiple: (BOOL)flag linkManageras the current link managéagis YES if
the panel will indicate that more than one link is
selected. Returr=elf.

Customizing the Panel
— (NSView *JaccessoryView Returns the NSDatalLinkPanel's custom accessory view.

— (void)setAccessoryViewNSView *)aView AddsaViewto the NSDataLinkPanel’s view hierarchy.

Responding to User Input

— (void)pickedBreakAllLinks: (id)sender Invoked when the user clicks the Break All Links button;
puts up an attention panel to confirm the user’s action,
and then sendstaeakAllLinks message to the current
link manager.

— (void)pickedBreakLink: (id)sender Invoked when the user clicks the Break Link button; puts
up an attention panel to confirm the user’s action, and
then sends Break message to the current link.

— (void)pickedOpenSource(id)sender Invoked when the user clicks the Open Source button;
sends ampenSourcemessage to the current link.

— (voidypickedUpdateDestination{id)sender Invoked when the user clicks Update from Source button;
sends a message to the current link to verify and update
the data source and then update the destination data.
Returnsself.

— (void)pickedUpdateMode{id)sender Invoked when the user selects the update mode; sends a
setUpdateMode:message to the current link.

1-96 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSEPSImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding, NSCopying (NSImageRep)
NSObject (NSObject)

Declared In: AppKit/NSEPSImageRep.h

Class Description
An NSEPSImageRep is an object that can render an image from encapsulated PostScript code (EPS).

Like most other kinds of NSImageReps, an NSEPSImageRep is generally used indirectly, through an NSimage
object. An NSImage must be able to choose between various representations of a given image. It also needs to
provide an off-screen cache of the appropriate depth for any image it uses. It determines this information by
querying its NSImageReps.

Thus to work with an NSImage, an NSEPSImageRep must be able to provide some information about its image.
The size of the object is set from the bounding box specified in the EPS header comments. Use these methods,
inherited from the NSImageRep class, to set the other attributes of the NSEPSImageRep:

setColorSpaceName:
setAlpha:
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Initializing a New Instance

+ (id)imageRepWithData(NSData *ppsData InvokesinitWithData: to return an instance with data from
epsData
— (id)initWithData: (NSData *gpsData Initialize an instance with data frogpsData

Getting Image Data
— (NSRecthoundingBox Returns the rectangle that bounds the image.

— (NSData *EPSRepresentation Returns the EPS representation of the image.

OpenStep Specification—10/19/94 Classes: NSEPSImageRepl-97

Drawing the Image

— (void)prepareGState Implemented by subclasses to initialize the graphics state
before the image is drawn.

1-98 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSEvent

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSEvent.h

Class Description

An NSEvent object contains information about an event such as a mouse-click or a key-down. The window system
associates each such user action with a window, reporting the event to the application that created the window.
Pertinent information about each event—such as which character was typed and where the mouse was located—is
collected in an NSEvent object and made available to the application. As events are received in the application,
they’re temporarily placed in storage called the event queue. When the application is ready to process an event, it
takes an NSEvent from the queue.

NSEvents are typically passed to the responder chain—a set of objects within the window that inherit from
NSResponder. For example, NSRespondaosseDown:andkeyDown: methods take an NSEvent as an

argument. When an NSApplication retrieves an NSEvent from the event queue, it dispatches it to the appropriate
NSWindow (which is itself an NSResponder) by involkiegDown: or a similar message. The NSWindow in turn
passes the event to the first responder, and the event gets passed on down the responder chain until some object
handles it. In the case of a mouse-dowmaaiseDown:message is sent to the NSView in which the user clicked

the mouse, which relays the message to its next responder if it can’t handle the message itself.

Most events follow this same path: from the window system to the application’s event queue, and from there, to the
appropriate objects of the application. However, the Application Kit can create an NSEvent from scratch and insert
it into the event queue for distribution, or send it directly to its destination. (It's rare dppéoationto create an

event directly, but it's possible, using NSEvent class methods. The newly created events can be added to the event
gueue by invoking NSWindow’s (or NSApplicationj)stEvent:atStart: method.

Events are retrieved from the event queue by calling the NSWindow method
nextEventMatchingMask:untilDate:inMode:dequeue: or a similar NSApplication method. These methods

return an instance of NSEvent. The nature of the retrieved event can then be ascertained by invoking NSEvent
instance methodstype, window, and so forth. All types of events are associated with a window. The
corresponding NSWindow object can be gotten by invokimglow. The location of the event within the window’s
coordinate system is obtained frédmeationinWindow, and the time of the event is gotten frimestamp. The
modifierFlags method returns an indication of which modifier keys (Command, Control, Shift, and so forth) were
held down while the event occurred.

OpenStep Specification—10/19/94 Classes: NSEvent 1-99

Thetype method returns an NSEventType, a constant that identifies the sort of event. The different types of events
fall into five groups:

» Keyboard events

* Mouse events

« Tracking-rectangle events
» Periodic events

« Cursor-update events

Some of these groups comprise several NSEventType constants; others only one. The following sections discuss
the groups, along with the corresponding NSEventType constants.

Keyboard Events

Among the most common events sent to an application are direct reports of the user's keyboard actions, identified
by these three NSEventType constants:

» NSKeyDown: The user generated a character by pressing a key.
* NSKeyUp: The key was released.
* NSFlagsChanged: The user pressed or released a modifier key, or turned Alpha Lock.on or off

Of these, key-down events are the most useful to the application. Whgpehgethod returns NSKeyDown, your
next step is typically to determine the character or characters generated by the key-down, by sending the NSEvent
acharactersmessage.

Key-up events are less used since they follow almost automatically when there has been a key-down event. And
because NSEventimodifierFlags method returns the state of the modifier keys regardless of the type of event,
applications normally don't need to receive flags-changed events; they're useful only for applications that have to
keep track of the state of these keys continuously.

Mouse Events

Mouse events are generated by changes in the state of the mouse buttons and by changes in the position of the
mouse cursor on the screen. This category consists of:

» NSLeftMouseDown, NSLeftMouseUp, NSRightMouseDown, NSRightMouseUp: Two sets of mouse-down
and mouse-up events, one for the left mouse button and one for the right. “Mouse-down” means the user
pressed the button; “mouse-up” means the button was released. If the mouse has just one button, only left
mouse events are generated. By sendiligleCount message to the NSEvent, you can determine whether
the mouse event was a single-click, double-click, and so on.

* NSLeftMouseDragged, NSRightMouseDragged: Two types of mouse-dragged events—one for when the
mouse is moved with its left mouse button down, or with both buttons down, and one for when it's moved
with just the right button down. A mouse with a single button generates only left mouse-dragged events. As
the mouse is moved with a button down, a series of mouse-dragged events is produced. The series is always
preceded by a mouse-down event and followed by a mouse-up event.

* NSMouseMoved: The user moved the mouse without holding down either mouse button.

1-100 Chapter 1: Application Kit OpenStep Specification—10/19/94

Mouse-dragged and mouse-moved events are generated repeatedly as long as the user keeps moving the mouse. If
the user holds the mouse stationary, neither event is generated until it moves again.

Note: OpenStep doesn't specify facilities for the third button of a three-button mouse.

Tracking-Rectangle Events

NSMouseEntered and NSMouseExited events are like the “Mouse Events” listed previously, in that they're
dependent on mouse movements. However, unlike the others, they're generated only if the application has asked
the window system to set a tracking rectangle in a window. An NSMouseEntered or NSMouseExited event is
created when the cursor has entered the tracking rectangle or left it. A window can have any number of tracking
rectangles; the NSEvent methimdckingNumber identifies which rectangle was entered or exited.

Periodic Events

An event of type NSPeriodic simply notifies an application that a certain time interval has elapsed. By using the
NSEvent class methatartPeriodicEventsAfterDelay:withPeriod:, an application can register that it wants

periodic events and that they should be placed in its event queue at a certain frequency. When the application no
longer needs them, the flow of periodic events can be turned off by inwikipigeriodicEvents An application

can't have more than one stream of periodic events active at dJimilee keyboard and mouse events, periodic
events aren’t dispatched to an NSWindow.

Cursor-Update Events

Events of type NSCursorUpdate are used to implement NSView’s cursor-rectangle methods. An NSCursorUpdate
event is generated when the cursor has crossed the boundary of a predefined rectangular area. The application can
respond by updating the cursor's shape.

Creating NSEvent Objects
+ (NSEvent *gnterExitEventWithType: (NSEventTypelype

location:(NSPointjocation Returns an NSEvent object initialized with general event
modifierFlags:(unsigned intjags data and information specific to mouse tracking
timestamp:(NSTimelntervallime (eventNumtrackingNumuserData)

windowNumber: (intjwindowNum
context:(NSDPSContext jontext
eventNumber:(int)eventNum
trackingNumber: (int)trackingNum
userData:(void *)userData

OpenStep Specification—10/19/94 Classes: NSEvent1-101

+ (NSEvent *keyEventWithType:(NSEventTypeype

location:(NSPoint)ocation
modifierFlags:(unsigned infjags
timestamp:(NSTimelntervallime
windowNumber: (int)windowNum
context:(NSDPSContext jontext
characters(NSString *keys

Returns an NSEvent object initialized with general event
data and information specific to keyboard evekeyg,
repeatKeycode ukey$. (ukeyssets the unmodified
character string.)

charactersignoringModifiers: (NSString *ukeys

isARepeat(BOOL)repeatKey
keyCode(unsigned shortpde

+ (NSEvent *nouseEventWithType(NSEventTypeype

location:(NSPointjocation
modifierFlags:(unsigned infjags
timestamp:(NSTimelntervallime
windowNumber: (intjwindowNum
context:(NSDPSContext jontext
eventNumber:(int)eventNum
clickCount: (int)clickNum
pressure(float)pressureValue

Returns an NSEvent object initialized with general event
data and information specific to mouse events
(eventNum, clickNunpressureValue)

+ (NSEvent *ptherEventWithType: (NSEventType)ype

location:(NSPointjocation
modifierFlags:(unsigned infjags
timestamp:(NSTimelntervalime
windowNumber: (intywindowNum
context:(NSDPSContext Jontext
subtype:(shortsubType
datal:(int)datal

data2:(int)data2

Getting General Event Information
— (NSDPSContext ontext
— (NSPointjocationInWindow

— (unsigned inthodifierFlags

— (NSTimelntervatimestamp
— (NSEventTypdype
— (NSWindow *Wwindow

— (int)windowNumber

1-102 Chapter 1: Application Kit

Returns an NSEvent object initialized with general event
data and information specific to kit-defined events
(subTypedatal,data2)

Returns the Display PostScript context of the event.

Returns the event’s location in the base coordinate system
of its window.

Returns an integer bitfield containing modifier-key flags.

Returns the time the event occurred in seconds since
system startup.

Returns the type of the event (left-mouse-up,
right-mouse-dragged, key-down, etc.).

Returns the window object associated with the event.

Returns the number of the window associated with the
event.

OpenStep Specification—10/19/94

Getting Key Event Information

— (NSString *gharacters

— (NSString *rharactersignoringModifiers

— (BOOL)sARepeat

— (unsigned shoteyCode

Getting Mouse Event Information

— (int)clickCount

— (int)eventNumber

— (floatpressure

Getting Tracking Event Information
— (int)trackingNumber

— (void *)userData

Requesting Periodic Events

Returns the character code (a string of characters generated
by the key event).

Returns the string of characters generated by the key event
as if no modifier key had been pressed (except for
Shift).

Returns whether the key event is being repeated (user is
holding down the key).

Returns the code that maps to a key on the keyboard.

Returns the number of mouse clicks associated with the
mouse event.

Returns the event number of the latest mouse-down event.
This information is also useful for handling tracking
events.

Returns a value indicating the pressure applied to the input
device (used for appropriate devices, not mice).

Returns the number that identifies the tracking rectangle.

Returns data arbitrarily associated with the event.

+ (void)startPeriodicEventsAfterDelay:(NSTimelntervaljlelaySeconds
withPeriod: (NSTimelntervalperiodSeconds Start generating periodic events with frequency

+ (void)stopPeriodicEvents

Getting Information about Specially Defined Events

— (int)datal
— (intdata2
— (shortsubtype

OpenStep Specification—10/19/94

periodSecondafter delaydelaySecondfor current
thread.

Stop generating periodic events for current thread, and
discard any periodic events remaining in the queue.

Returns special data associated with the event.
Returns special data associated with the event.

Returns the identifier of the specially defined event.

Classes: NSEvent1-103

NSFont

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSFont.h

Class Description

The NSFont class declares the programmatic interface to objects that correspond to fonts. NSFont is in principle
an abstract class that represents fonts in general, not just PostScript fonts. In practice, at this time, NSFont objects
represent PostScript fonts. Each NSFont object records a font's name, size, style, and matrix. When an NSFont
object receives setmessage, it establishes its font as the current font in the PostScript Server’s current graphics
state.

For a given application, only one NSFont object is created for a particular PostScript font/size or font/matrix
combination. That is—if you ask for 24-point Optima, a new font object is created for 24-point Optima if such an
object doesn't exist already. When the NSFont class object receives a message to create a new object for a particular
font, it first checks whether an object has already been created for that font. If so, the the NSFont class object returns
the existing font object; otherwise, the the NSFont class object creates a new font object and returns it.

This sharing of NSFont objects minimizes the number of distinct font objects created. It also implies that no one
object in your application can know whether it has the only reference to a particular NSFont object. Thus, NSFont
objects shouldn’t be deallocated, but should be treated like auto-released Foundation class objects.

Wherematrix is used, it refers to a PostScript-style six-element array of numbers that indicate transformations to
be applied to a font. An NSFontldentityMatrix identifies a font matrix used for fonts created by specifying a size.

Thesizeof a font in the method definitions is defined in “points”, which in currently accepted practice, are actually
PostScript units—a PostScript unit being defined as 1/72 of an inch, or 0.0139 of an inch. In metric equivalents, a
PostScript unit is 0.3528 millimetres. PostScript “points” are minimally different from “printer’s points”, so for all
intents and purposes you can think of PostScript units and points as interchangeable.

In general, you instantiate an NSFont object by sending one of the methods listed in “Creating a Font Object” to
the NSFont class object. The methods witetemanduserin their names obtain special pre-determined fonts
defined at the system level and the application level, respectively. In general, you would use the
fontWithName:size: andfontWithName:matrix: methods to obtain a named font.

A variety of methods are available for querying a font object. In particular, AFM (Adobe Font Metrics) data can be
obtained by invokingfmDictionary or afmFileContents

Methods whose descriptions state “Returns...and matrix NSFontldentityMatrix” actually return an
NSFontldentityMatrix whose first and fourth elements are multiplied by the current size of the font.

1-104 Chapter 1: Application Kit OpensStep Specification—10/19/94

Exceptions

Methods listed in “Creating a Font Object” can all raise a NSFontUnavailableException if the requested font can’t
be constructed.

Creating a Font Object

+ (NSFont *poldSystemFontOfSizeffloat)fontSize Returns the font object representing the bold system font
of sizefontSizeand matrix NSFontldentityMatrix.

+ (NSFont *fontWithName: (NSString *fontNamematrix: (const float *jontMatrix
Returns a font object for foftntNameand matrix
fontMatrix.

+ (NSFont *fontWithName: (NSString *fontNamesize{float)fontSize
Returns a font object for fofontNameof sizefontSize

+ (NSFont *systemFontOfSizeffloat)fontSize Returns the font object representing the system font of size
fontSizeand matrix NSFontldentityMatrix.

+ (NSFont *userFixedPitchFontOfSize(float)fontSize
Returns the font object representing the application’s
fixed-pitch font of sizdontSizeand matrix
NSFontldentityMatrix

+ (NSFont *userFontOfSize(float)fontSize Returns the font object representing the application’s
standard font of siziontSizeand matrix
NSFontldentityMatrix.

Setting the Font

+ (void)setUserFixedPitchFont(NSFont *aFont Sets the fixed-pitch font used by default in the application

to aFont

+ (void)setUserFont(NSFont *aFont Sets the standard font used by default in the application to
aFont

+ (void)useFont(NSString *fontName Registers thaiontNameis used in the document. This

information is used by the printing machinery

— (void)set Makes this font the graphic state’s current font.

Querying the Font

— (NSDictionary *afmDictionary Returns the font's AFM dictionary if the font has an AFM
file. The return value can possibly hi&, so you must
check to determine if a namit value was actually
returned.

OpenStep Specification—10/19/94 Classes: NSFont1-105

— (NSString *afmFileContents

— (NSRectpoundingRectForFont

— (NSString *flisplayName

— (NSString *familyName
— (NSString *JontName
— (BOOL)sBaseFont

— (const float *jnatrix

— (floatpointSize

— (NSFont *printerFont

— (NSFont *kcreenFont

— (floatwidthOfString: (NSString *)string

— (float *)widths

Manipulating Glyphs

Returns the raw contents of the entire AFM file, in terms of
strings, if the font has an AFM file. If the font does not
have an AFM file, this method retumns.

Returns the bounding rectangle for the font. This is the
font's FontBBox field scaled to the current size of the
font.

Returns the full name of the font as displayed in the font
panel. This is the localized version of the font's name. It
is not necessarily the FullName field of the font.

Returns the name of the font's family.
Returns the name of the font.

Indicates whether the font is a base font, as opposed to a
composite font.

Returns a pointer to an array of six floats representing the
font’'s matrix. You should not alter the data pointed to by
matrix. If you wish to change values for any reason you
must make a copy of the matrix

Returns the size of the font in points.

Returns the printer font for the font, if the receiving font
object is a screen font. Else, this method retaetis

Returns the screen font for the font, if there is one. Else this
method returnself.

Returns the width ddtring in the font. Use this method
with caution: it assumes that the charactesdringcan
all actually be rendered in the font. It uses lossy
encoding methods in NSString to get the character data.

Returns a pointer to an array representing the widths of the
glyphs in the font.

— (NSSizegdvancementForGlyph{NSGlyphaGlyph

1-106 Chapter 1: Application Kit

Returns the horizontal and vertical advancement for
aGlyph That is, this method returns the amount by
which the current point would be displaced in both
andy if the specified glyph were rendered in the current
font and size. In general, tjggomponent of the
displacement for “Western” fonts will be zero.

OpensStep Specification—10/19/94

— (NSRectpboundingRectForGlyph:(NSGlyphaGlyph
Returns a bounding rectangle &®lyph scaled to the
font’s actual size and matrix.

— (BOOL)YlyphisEncoded{NSGlyphpaGlyph Indicates whetheaGlyphis encoded. That isGlyphis
present in the encoding for the font.

— (NSPointpositionOfGlyph: (NSGlyphkurGlyph ReturnscurGlypHs position when it followgprevGlyph.
precededByGlyph{NSGlyphprevGlyph nominalis a pointer to a BOOL. If natil, this method
isNominal:(BOOL *)nominal fills in nominalwith YES, to indicate that the position

has been modified by kerning information, and NO to
indicate that no kerning information was present.

OpenStep Specification—10/19/94 Classes: NSFont1-107

NSFontManager

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSFontManager.h

Class Description

NSFontManager declares the programmatic interface to objects that manage font conversion in an application.
NSFontManager is the center of activity for font conversion. NSFontManager accepts messages from font
conversion user-interface objects such as the Font menu or the Font panel (see NSFontPanel for more details) and
appropriately converts the current font in the selection by sendingreFont: message up the responder chain.

When an object receiveshangeFont:message, it should message NSFontManager (by sendoanitertFont:
message), asking it to convert the font in whatever way the user has specified. Thus, any object containing a font
that can be changed should respond teh@mgeFont:message by sendinganvertFont: message back to the
NSFontManager for each font in the selection.

To use NSFontManager, you simply insert a Font menu into your application’s menu using the appropriate interface
construction tools (such as Interface Builder). You can also obtain a Font menu by seyadifapgMenu:

message to NSFontManager and then inserting the menu it returns into the application’s main menu. Once the Font
menu is installed, your application automatically gains the functionality of both the Font menu and the Font panel.

NSFontManager’s delegate can restrict which font names will appear in the Font Panel. See “Methods Implemented
by the Delegate” at the end of this class specification for more information.

NSFontManager can be used to convert a font or find out the attributes of a font. It can also be overridden to convert
fonts in some application-specific manner. The default implementation of font conversion is very conservative: The
font isn’t converted unless all traits of the font can be maintained across the conversion.

Generally, you obtain an instance of NSFontManager by sendingradFontManagermessage to the
NSFontManager class object. NSFontManager will return a font manager object that is shared within your
application. NSFontManager normally returns a pre-defined font manager object, but the actual object which is
returned can be changed by previously invoking#teontManagerFactoryfactory to some other kind of object.

Font Traits

Fonts work mainly in terms dfaits, or characteristics, such as bold, italic, condensed, and so on. Traits are
described by a collection of constants sucN&HalicFontMask, NSBoldFontMask, and so on. The full
complement of traits are definedAppKit/NSFontManager.hrhe values of traits are defined in bitwise form
so they can be or’ed together, although some traits, si¢BBaldFontMask andNSUnboldFontMask naturally
conflict and have the effect of turning each other off. You use one obtivertFont... methods to obtain a font
of the desired characteristics from an existing font.

1-108 Chapter 1: Application Kit OpensStep Specification—10/19/94

TheconvertFont:toHaveTrait: and theconvertFont:toNotHaveTrait: methods deal with only one trait at a time.

To convert a font to have (or not have) multiple traits, you must invoke these methods for each separate trait you
wish to add to or remove from the font. Alternatively, usefah&VithFamily:traits:weight:size: method to

specify multiple traits in one invocation.

Thesizeof a font in the method definitions below is defined in “points”, which, in the current milieu, are actually
PostScript units—a PostScript unit being defined as 1/72 of an inch, or 0.0139 of an inch. In metric equivalents, a
PostScript unit is 0.3528 millimetres. PostScript “points” are minimally different from “printer’s points”, so for alll
intents and purposes you can think of PostScript units and points as interchangeable.

Theweightof a font as used in these methods is simply a value representing a point in a continuum of font weights
from lightest to heaviest. There’s no simple one-to-one mapping of some integer value tolshyegght. If you

query the font for its weight value, increment the value, and use it as a new weight, you'll not necessarily obtain a
different face (such as a transition from medium to bold) in a new instance of the font.

Managing the FontManager
+ (void)setFontManagerFactory{Classtlassld Sets the class used to create the NSFontManager.
+ (void)setFontPanelFactory(Classtlassld Sets the class used to create the FontPanel.

+ (NSFontManager $haredFontManager Returns a shared FontManager.

Converting Fonts

— (NSFont *ronvertFont:(NSFont *fontObject ConvertdontObjectaccording to the user’s selections from
the Font panel or the Font menu.

— (NSFont *ronvertFont:(NSFont *fontObject Returns a Font object whose traits are the same as those of
toFamily: (NSString *family fontObjectexcept as specified Bgmily.
— (NSFont *ponvertFont:(NSFont *fontObject Returns a Font object whose traits are the same as those of
toFace(NSString *typeface fontObjectexcept as specified typeface
— (NSFont *ronvertFont:(NSFont *fontObject Returns a Font object whose traits are the same as those of
toHaveTrait: (NSFontTraitMasKyait fontObjectexcept as altered by the addition of the traits
specified bytrait.
— (NSFont *ronvertFont:(NSFont *fontObject Returns a Font object whose traits are the same as those of
toNotHaveTrait: (NSFontTraitMasKyait fontObjectexcept as altered by the removal of the traits
specified bytrait.
— (NSFont *ponvertFont:(NSFont *fontObject Returns a Font object whose traits are the same as those of
toSize{(float)size fontObjectexcept as specified lzjze
— (NSFont *ronvertWeight:(BOOL)upFlag Attempts to increase (ifpFlagis YES) or decrease (if
ofFont:(NSFont *fontObject upFlagis NO) the weight of the font specified by
fontObject

OpenStep Specification—10/19/94 Classes: NSFontManaget-109

— (NSFont *JontWithFamily: (NSString *family
traits: (NSFontTraitMaskyaits
weight:(int)weight
size{(float)size

Setting and Getting Parameters
— (SEL)ction

— (NSArray *javailableFonts
— (NSMenu *jontMenu: (BOOL)create

— (NSFontPanel fpntPanel:(BOOL)create

— (BOOL)sEnabled

— (BOOL)sMultiple

— (NSFont *selectedFont

— (void)setAction:(SEL)aSelector

— (voidsetEnabled(BOOL)flag
— (voidsetFontMenu:(NSMenu *newMenu

— (voidsetSelectedFon{NSFont *fontObject
isMultiple: (BOOL)flag

Tries to find a font that matches the specified
characteristics.

Gets the action sent by the FontManager.
Provides an array listing all available fonts.

Returns the Font menu, creating one if it doesn'’t exist and
createis YES.

Returns the Font panel, creating one if it doesn’t exist and
createis YES.

Returns whether the Font panel and menu are enabled.
Returns whether the selection contains multiple fonts.
Returns the first font in the current selection

Sets the action to that specifieddfyelectorto be sent by
the FontManager when the user selects a new font.

Enables or disables the Font panel and menu depending on
flag.

Sets the font menu teewMenu

Notifies FontManager of the selection’s current font from
fontObjecwith flag indicating whether the selection
has multiple fonts.

— (NSFontTraitMasKkjaitsOfFont: (NSFont *fontObject

— (int)weightOfFont: (NSFont *fontObject

Target and Action Methods
— (BOOL)sendAction

Assigning a Delegate
— (id)delegate
— (voidsetDelegateiid)anObject

1-110 Chapter 1: Application Kit

Returns the font traits ddntObject

Returns the font weigtdf fontObject

Dispatches the action message up the responder chain.

Returns the FontManager’s delegate.

Sets the FontManager’s delegat@atn®bject

OpensStep Specification—10/19/94

Methods Implemented by the Delegate

— (BOOL)YontManager:(id)sendemillincludeFont: (NSString *fontName
Responds to a message informing the FontManager’s
delegate that the FontPanel is about to include
fontNaman the list displayed to the user; if this method
returns NO, the font isn’t added; otherwise, it is.

OpenStep Specification—10/19/94 Classes: NSFontManaget-111

NSFontPanel

Inherits From:

Conforms To:

Declared In:

Class Description

NSPanel : NSWindow : NSResponder : NSObiject

NSCoding (NSResponder)
NSObject (NSObject)

AppKit/NSFontPanel.h

The NSFontPanel class declares the programmatic interface to a user-interface object that displays a list of available
fonts, enabling users to preview them and change the typefaces in which text is displayed. Actual changes to text
are effected through conversion messages sent to the NSFontManager. There is only one NSFontPanel object for
each application.

In general, you add the facilities of the NSFontPanel (and of the other components of the font conversion system:
the NSFontManager and the Font menu) to your application through interface construction tools (such as Interface

Builder). You do this by including a Font menu into one of your application’s menus. At runtime, when the user
chooses the Font Panel command for the first time, the NSFontPanel object is created and hooked into the font
conversion system. You can also create (or access) NSFontPanel throsigdréld€ontPanelmethod.

An NSFontPanel can be customized by adding an additional NSView object or hierarchy of NSView objects by
using thesetAccessoryViewmethod. If you want the NSFontManager to instantiate a panel object from some
class other than NSFontPanel, use the NSFontManag#FentPanelFactory:method. See NSFontManager for
details on the font manager object that performs font conversion tasks.

Creating an NSFontPanel

+ (NSFontPanel §haredFontPanel Returns an NSFontPanel object.

— (NSFont *panelConvertFont:(NSFont *fontObject

Setting the Font

Returns a Font object whose traits are the same as those of
fontObjectexcept as specified by the user’s choices in
the Font Panel.

— (void)setPanelFont(NSFont *fontObject Sets the FontPanel's current font fréontObjectwith flag
isMultiple: (BOOL)flag indicating whether it contains multiple fonts.

1-112 Chapter 1: Application Kit OpensStep Specification—10/19/94

Configuring the NSFontPanel
— (NSView *)accessoryView
— (BOOL)sEnabled
— (void)setAccessoryViewNSView *)aView

— (void)setEnabled(BOOL)flag

— (BOOLworksWhenModal

Displaying the NSFontPanel

Returns the application-customized view.
Returns whether the FontPanel's Set button is enabled.

AddsaViewabove the action buttons at the bottom of the
panel.

Enables or disables the FontPanel's Set button depending
onflag.

Returns whether FontPanel works when another window is
modal.

— (void)orderWindow: (NSWindowOrderingModgjlace

relativeTo: (int)otherWindows

OpenStep Specification—10/19/94

Repositions the FontPanel above or below the other
windowsotherWindowsas indicated bplaceand
updates the FontPanel if necessary.

Classes: NSFontPanel-113

NSForm

Inherits From: NSMatrix : NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSForm.h

Class Description

An NSForm is an NSMatrix that contains titled entries (text fields) into which a user can type data values. Entries
are indexed from the top down (starting with zero). Each item in the NSForm, including the titles, is an
NSFormCell. A mouse click on an NSFormCell (that is, on the title or in the entry area) starts text editing in that
entry. If the user presses the Return or Enter key while editing an entry, the action of the entry is sent to the target
of the entry, or—if the entry doesn't have an action—the NSForm sends its action to its target. If the user presses
the Tab key, the next entry in the NSForm is selected; if the user presses Shift-Tab, the previous entry is selected.

For more information, see the NSFormCell and NSMatrix class specifications.

Laying Out the Form
— (NSFormCell *addEntry: (NSString *}itle

— (NSFormCell *)nsertEntry: (NSString *Yitle
atindex: (int)index

— (voidyemoveEntryAtindex: (int)index

— (void)setinterlineSpacing{float)spacing

Finding Indices
— (intlindexOfCellWithTag: (int)aTag

— (intindexOfSelectedltem

Modifying Graphic Attributes
— (void)setBezeledBOOL)flag
— (void)setBordered{BOOL)flag
— (void)setTextAlignment:(intymode
— (void)setTextFont(NSFont *fontObject

1-114 Chapter 1: Application Kit

Adds and returns a new entry wiitke as its title at the end
of the Form.

Inserts a new entry atdexwith title as its title.

Removes the entry atdex

Sets the spacing between entriesgacing

Returns the index for the entry with tagag

Returns the index of the currently selected entry.

Sets whether entries have a bezeled border.
Sets whether the entries have a plain border.
Sets how text is aligned within the entriesrtode

Sets the font used to draw entry texfdntObject

OpenStep Specification—10/19/94

— (voidsetTitleAlignment: (NSTextAlignmentinode Sets how titles are aligned taode

— (void)setTitleFont:(NSFont *fontObject

Setting the Cell Class

+ (ClasstellClass

+ (void)setCellClass(Classtlassld

Getting a Cell
— (id)cellAtIndex: (int)index

Displaying a Cell
— (void)rawCellAtindex: (int)index

Editing Text

— (void)selectTextAtindex:(int)index

Resizing the Form

— (void)setEntryWidth: (floatwidth

OpenStep Specification—10/19/94

Sets the font used to draw entry titlegdntObject

Returns the class last set isedCellClass:message, or the
NSFormcCell class isetCellClass:has never been
called.

Sets the class of NSCell used in the NSForm.

Returns the Cell ahdex

Displays the Cell at the specifiediex

Selects the text in the entryiatiex

Sets the width of all the entries (including the title part) to
width.

Classes: NSForm1-115

NSFormCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSFormCell.h

Class Description

This class is used to implement entries in an NSForm. It displays a title within itself, on the left-hand side of the
cell. Editing is allowed only in the remaining (right-hand) portion.

See the NSForm class specification for more on the use of NSFormCell.

Initializing an NSFormCell

— (id)initTextCell: (NSString *aString Initializes a new NSFormCell withStringas its title.

Determining an NSFormCell’s Size

— (NSSizegellSizeForBounds{NSRectaRect Calculates the NSFormCell’s size wittdRect

Determining Graphic Attributes

— (BOOL)sOpaque Returns whether the NSFormCell is opaque.

Modifying the Title
— (void)setTitle:(NSString *)aString Sets the NSFormCell’s title @String
— (void)setTitleAlignment: (NSTextAlignmentinode Sets the alignment of the title toode

— (void)setTitleFont:(NSFont *fontObject Sets the font used to draw the titlfaatObject

— (void)setTitleWidth: (floatwidth Sets the width of the NSFormCell’s title fieldvtadth.
— (NSString *jitle Returns the NSFormCell’s title.

— (NSTextAlignmentjtleAlignment Returns the alignment of the title.

— (NSFont *jitleFont Returns the font used to draw the title.

1-116 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (float}itleWidth Returns the width of the title.
— (float}itleWidth: (NSSizeaSize Returns the width of the title, constrainecafsize

Displaying

— (voiddrawlnteriorWithFrame: (NSRectkellFrameDraws only the editable text portion of the FormCell.
inView: (NSView *)controlView

OpenStep Specification—10/19/94 Classes: NSFormCelll-117

NSHelpPanel

Inherits From:

Conforms To:

Declared In:

Class Description

NSPanel : NSWindow : NSResponder : NSObiject

NSCoding (NSResponder)
NSObject (NSObject)

AppKit/NSHelpPanel.h

The NSHelpPanel class is the central component of the OpenStep help system. It provides the Help panel that
displays the text and illustrations that constitute your application’s help information. The NSHelpPanel class object
itself stores the table of associations between an application’s user-interface objects and specific passages of the
help text.

Users can display the Help panel by choosing the Help command from an application’s Info menu. The panel
employs the metaphor of a book: It displays a table of contents, body text, and an index. Users can browse through
the text by clicking entries in the table of contents or index. The panel also supports hypertext-like help links, which
appear as diamond-shaped images within the text and allow the user to easily follow cross references. By using the
help cursor and clicking user-interface objects, the user can query the Help panel for information associated with
those objects.

The Help Text

An NSHelpPanel object looks in a language-specific directory within the application’s file package for the text that
it will display. (Some implementations may employ more efficient means of storage than files and directories.) For
example, if the user’s language preference is English, the panel searches for a directoryahamétin the
English.lproj directory of the application’s file package. It searches for two TilddeOfContents.rtf and

Index.rtfd . There may also be one or more files containing the body text that the Help panel will display. The
table-of-contents, index, and body files are interconnectedsggtem ohelp linksandhelp markers

A help marker is a named position holder in the stream of text—in most cases, it’s invisible to users. A help link is
a diamond-shaped button embedded in the text. Help links store a file name and, optionally, a help marker name.
When a user clicks a help link, the Help panel displays the named file. If the help link also stores a marker name,
the displayed file is scrolled to the position of the marker, and the text is selected from the marker’s position to the
end of the line.

Table-of-Contents and Index Files

The table-of-contents and index files are specially designed documents in Rich Text Format (RTF). An
NSHelpPanel object identifies these files by nafableOfContents.rtf andindex.rtfd) and processes them
differently than it does other help files.

The table-of-contents file should contain one entry for each help text file in the help directory. Each entry begins
with a help link that stores the name of the destination file for that entry. Following the link is the text of the entry,

1-118 Chapter 1: Application Kit OpensStep Specification—10/19/94

which may wrap and span several lines. Although the table of contents in the Help panel looks like it's displayed
by an NSMatrix, it's actually displayed by a modified NSText object. Thus, you can use the full generality of RTF
to format your table of contents.

The index file is structured similarly although there is no enforced one-to-one mapping. Generally, the help link
that begins an index entry stores both a file name and a marker name, since an index entry usually points to a specific
word or phrase within a file.

Generic Help Files

An application’s Help directory can contain only table-of-contents and index files, and yet the application may be
able to display numerous help subjects, each of a general nature. This is because OpenStep applications have access
to generic help files contained in a directory found in a system-specific location.

When a help link is being resolved, the NSHelpPanel first looks for the specified file within the appropriate
languagelproj/Help directory of the application’s file package. If the file isn't found, it then searches the directory

of generic help files. This search path is used for all links, whether they are in the table of contents, index, or body
text.

If one of these generic help files is inappropriate for your application, you have two remedies: You can remove the
table-of-contents and index entries that refer to it, or you can override the file with one that's more appropriate. By
placing a file of the same name and relative location within your applicatietpsdirectory, NSHelpPanel will

display it rather than the generic file.

Associating Help Text with Objects

The NSHelpPanel class stores associations between user-interface objects and help text. When the user presses the
Help modifier key (which varies depending on the hardware running the application), a question mark cursor
appears. If the user clicks an object using this cursor, the Help panel displays the associated help text.

You can attach a help file to a user-interface object programmatically, by sending an
attachHelpFile:markerName:to: messagéo the NSHelpPanel class object. This method takes a file name, a
marker name, and an objedtas its arguments. ThietachHelpFrom: message removes such an association.

Just as with help links, an NSHelpPanel searches both the application’s file package and the generic help files in
attempting to find the file associated with a particular user-interface object.

Hidden Files

Although in general there’s a one-to-one relationship between table-of-contents entries and fildslm the
directory, you can force a single table-of-contents entry to represent multiple “hidden” files. This can be useful in
reducing the overall length of the table of contents.

Hidden files can’t be accessed from the table of contents; rather, the user must find them by Help-clicking an object
in the application’s user interface, by using the Help Panel's Find command, by using the index, or by following a
help link from some other file. However, when a hidden file is displayed, the Help panel must select some entry in
the table of contents.

OpenStep Specification—10/19/94 Classes: NSHelpPanel-119

Conversely, when the user selects such a table-of-contents entry, the Help panel must display one of the files in the
directory of hidden files; by convention, this file must be nalRretbg.rtfd . The prolog file typically informs users
that they can get help on a particular user-interface object by Help-clicking that object.

The Help panel’s Find button searches through all the files that are connected to table-of-contents entries, first
looking in the application’slelp directory and then in the generic help material. If you don’t want some hidden

file in the generic help material to appear in your application’s Help panel as the result of a Find operation, override
the file with an empty file of the same name. Since the file is empty, no search string will ever be found in it, and it
will effectively block the generic file of the same name from being searched.

Searching the Help Text

By clicking the Help panel’s Find button, users can search the help text for strings. NSHelpPanel uses two
approaches to locate text containing a specific string. First, it attempts to find the string in the currently displayed
help text by sending the object that displays the text (an instance of NSCStringText) a
findText:ignoreCase:backwards:wrap: message. If the search is unsuccessful, or if the search is continued past
the last occurrence of the string in the current file, the NSHelpPanel object scans for the string in other help files,
both within the application’s help files and within the generic help files. Some implementations of NSHelpPanel
may make use of a previously built index of all the help text to speed this search.

Help Supplements

Since in OpenStep an application may load executable modules dynamically (for example, a drawing program
could allow the user to load a new drawing tool), an NSHelpPanel object provides the ability to load supplemental
help information. When the application loads the module, it sends the NSHelpPanel object an
addSupplement:inPath: message to inform the object of the location of the new help supplement. The
NSHelpPanel object appends the contents of the supplermabkOfContents.rtf to the existing table of

contents, so the supplement should have a title that clearly sets it off from the main part of the table of contents, for
example:

—Pattern Tool Supplement—

Pattern Options

Brick

Stucco

Wood

Tile

Custom
Resizing and Rotating
Blending Patterns
Index to Supplement

The supplement’s index is only accessible from the table of contents; the Help panel's Index button displays only
the main index.

1-120 Chapter 1: Application Kit OpensStep Specification—10/19/94

Accessing the Help Panel
+ (NSHelpPanel §haredHelpPanel Creates, if necessary, and returns the NSHelpPanel object.

+ (NSHelpPanel jharedHelpPanelWithDirectory:(NSString *helpDirectory
Creates, if necessary, and returns the NSHelpPanel object.
If the panel is created, it loads the help directory
specified byhelpDirectory The help directory must
reside in the main bundle. If a Help panel already exists
but has loaded a help directory other than
helpDirectory a second panel will be created.

Managing the Contents

+ (void)setHelpDirectory:(NSString *helpDirectory Initializes the panel to display the help text found in
helpDirectory By default, the receiver looks for a
directory named “Help”.

— (voidladdSupplement(NSString *helpDirectory Append additional help entries to the Help panel’s table of

inPath:(NSString *supplementPath contents.
— (NSString *helpDirectory Returns the absolute path of the help directory.
— (NSString *helpFile Returns the path of the currently loaded help file.

Attaching Help to Objects

+ (void)attachHelpFile:(NSString *¥ilename Associates the help fildenameandmarkerNamewith
markerName:(NSString *markerName anObject
to:(id)anObject
+ (void)detachHelpFrom:(id)anObject Removes any help information associated witbject
Showing Help
— (voidshowFile:(NSString *¥filename Causes the panel to display the help containéiteimame
atMarker: (NSString *ymarkerName atmarkerName
— (BOOL)showHelpAttachedTo{id)anObject Causes the panel to display help attacheh@bject
Printing
— (void)print: (id)sender Prints the currently displayed help text.

OpenStep Specification—10/19/94 Classes: NSHelpPanel-121

NSImage

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImage.h

Class Description

An NSImage object contains an image that can be composited anywhere without first being drawn in any particular
view. It manages the image by:

Reading image data from the application bundle, from an NSPasteboard, or from an NSData object.
Keeping multiple representations of the same image.

Choosing the representation that's appropriate for a particular data type.

Choosing the representation that's appropriate for any given display device.

Caching the representations it uses by rendering them in off-screen windows.

Optionally retaining the data used to draw the representations, so that they can be reproduced when needed.
Compositing the image from the off-screen cache to where it's needed on-screen.

Reproducing the image for the printer so that it matches what's displayed on-screen, yet is the best
representation possible for the printed page.

Automatically using any filtering services installed by the user to convert image data from unsupported
formats to supported formats.

Defining an Image

An image can be created from various types of data:

Encapsulated PostScript code (EPS)

Bitmap data in Tag Image File Format (TIFF)

Untagged (raw) bitmap data

Other image data supported by an NSImageRep subclass registered with the NSImage class

Data that can be filtered to a supported type by a user-installed filter service

1-122 Chapter 1: Application Kit OpensStep Specification—10/19/94

If data is placed in a file (for example, in an application bundle), the NSImage object can access the data whenever
it's needed to create the image. If data is read from an NSData object, the NSImage object may need to store the
data itself.

Images can also be defined by the program, in two ways:

» By drawing the image in an off-screen window maintained by the NSimage object. In this case, the NSimage
maintains only the cached image.

« By defining a method that can be used to draw the image when needed. This allows the NSImage to delegate
responsibility for producing the image to some other object.

Image Representations

An NSImage object can keep more than one representation of an image. Multiple representations permit the image
to be customized for the display device. For example, different hand-tuned TIFF images can be provided for
monochrome and color screens, and an EPS representation or a custom method might be used for printing. All
representations are versions of the same image.

An NSImage returns an NSArray of its representations in respongepteaentationsmessage. Each
representation is a kind of NSImageRep object:

NSEPSImageRep An image that can be recreated from EPS data that's either stored by the object
or at a known location in the file system.

NSBitmaplmageRep An image that can be recreated from bitmap or TIFF data.

NSCustomimageRep An image that can be redrawn by a method defined in the application.

NSCachedimageRep An image that has been rendered in an off-screen cache from data or

instructions that are no longer available. The image in the cache provides the
only data from which the image can be reproduced.

You can define other NSImageRep subclasses for objects that render images from other types of source data. To
make these new subclasses available to an NSIimage object, they need to be added to the NSimageRep class registry
by invoking theegisterimageRepClassclass method. NSimage determines the data types that each subclass can
support by invoking ittmageUnfilteredFile TypesandimageUnfilteredPasteboard Typesnethods.

Choosing Representations

The NSImage object will choose the representation that best matches the rendering device. By default, the choice
is made according to the following set of ordered rules. Each rule is applied in turn until the choice of representation
is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale representation for a monochrome device.

2. Choose a representation with a resolution that matches the resolution of the device, or if no representation
matches, choose the one with the highest resolution.

OpenStep Specification—10/19/94 Classes: NSImagel-123

By default, any image representation with a resolution that’s an integer multiple of the device resolution is
considered to match. If more than one representation matches, the NSimage will choose the one that’s
closest to the device resolution. However, you can force resolution matches to be exact by passing NO to the
setMatchesOnMultipleResolution:method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution, over EPS representations,
which don’t. However, you can use ttetUsesEPSOnResolutionMismatchmethod to have the NSimage
choose an EPS representation in case a resolution match isn't possible.

3. If all else fails, choose the representation with a specified bits per sample that matches the depth of the
device. If no representation matches, choose the one with the highest bits per sample.

By passing NO to theetPrefersColorMatch: method, you can have the NSimage try for a resolution match before
a color match. This essentially inverts the first and second rules above.

If these rules fail to narrow the choice to a single representation—for example, if the NSImage has two color TIFF
representations with the same resolution and depth—the one that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NSImage object chooses the representation that’s best for the
destination display device, as outlined above. It renders the representation in an off-screen window on the same
device, then composites it from this cache to the desired location. Subsequent requests to composite the image use
the same cache. Representations aren’t cached until they're needed for compositing.

When printing, the NSImage tries not to use the cached image. Instead, it attempts to render on the printer—using
the appropriate image data, or a delegated method—the best version of the image that it can. Only as a last resort
will it image the cached bitmap.

Image Size

Before an NSImage can be used, the size of the image must be set, in units of the base coordinate system. If a
representation is smaller or larger than the specified size, it can be scaled to fit.

If the size of the image hasn't already been set when the NSImage is provided with a representation, the size will
be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The TIFF fields
“ImagelLength” and “ImageWidth” are used to determine the size of an NSBitmaplmageRep.

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate system; they can'’t be rotated or flipped.
When composited, an image maintains this orientation, no matter what coordinate system it's composited to. (The
destination coordinate system is used only to determine the location of a composited image, not its size or
orientation.)

It's possible to refer to portions of an image when compositing by specifying a rectangle in the image’s coordinate
system, which is identical to the base coordinate system, except that the origin is at the lower left corner of the
image.

1-124 Chapter 1: Application Kit OpensStep Specification—10/19/94

Named Images

An NSImage object can be identified either bydter by a name. Assigning an NSimage a name adds it to a table

kept by the class object; each name in the database identifies one and only one instance of the class. When you ask
for an NSImage object by name (with trageNamed:method), the class object returns the one from its database,
which also includes all the system bitmaps provided by the Application Kit. If there’s no object in the database for
the specified name, the class object tries to create one by checking for a system bitmap of the same name, checking
the name of the application’s own image, and then checking for the image in the application’s main bundle.

If a section or file matches the name, an NSImage is created from the data stored there. You can therefore create
NSImage objects simply by including EPS or TIFF data for them within the executable file, or in files inside the
application’s file package.

Image Filtering Services

NSImage is designed to automatically take advantage of user-installed filter services for converting unsupported
image file types to supported image file types. The class mietlagg FileTypesreturns an array of all file types

from which NSImage can create an instance of itself. This list includes all file types supported by registered
subclasses of NSImageRep, and those types that can be converted to supported file types through a user-installed
filter service.

Initializing a New NSImage Instance

— (id)initByReferencingFile:(NSString *filename Initializes the new NSImage from the datdiiename The
file is assumed to persist and may be reread later if the
NSImage is resized or otherwise modified.

— (id)initWithContentsOfFile: (NSString *¥ilename
Initializes the new NSImage from the datdilename

— (id)initWithData: (NSData *pata Initializes the new NSImage frodata

— (id)initWithPasteboard: (NSPasteboard pasteboard
Initializes the new NSImage with the datgpesteboard

— (id)initWithSize: (NSSizepSize Initializes the new NSImage to the specified size.

Setting the Size of the Image
— (void)setSize(NSSizeaSize Sets the size of the imaged8izein base coordinates.

— (NSSizegize Returns the size of the image.

Referring to Images by Name

+ (id)imageNamed(NSString *hame Returns the NSImage object havimgme Searches the
main bundle for the image if necessary.

OpenStep Specification—10/19/94 Classes: NSImagel-125

— (BOOL)setName(NSString *name

— (NSString *hame

Specifying the Image

Assignsnameto be the receiver’'s name. Returns NO if

nameis already in use; otherwise, returns YES.

Returns the receiver’'s name.

— (voidyaddRepresentation(NSImageRep fjnageRep

AddsimageRepo the receiver’s list of representations.

— (voidladdRepresentations{NSArray *)imageRepArray

— (void)JockFocus

Adds theimageRep fromimageRepArrayo the receiver's

list of representations.

Prepares for drawing in the best representation.

— (void)lockFocusOnRepresentationNSImageRep fjnageRep

— (voidunlockFocus

Using the Image

— (voidcomposite ToPoint(NSPointaPoint
operation:(NSCompositingOperationp

— (void)}compositeToPoint(NSPointaPoint
fromRect:(NSRectaRect
operation:(NSCompositingOperatioop

— (void)issolveToPoint(NSPointaPoint
fraction: (floatjaFloat

— (voiddissolveToPoint(NSPointaPoint
fromRect: (NSRectaRect
fraction: (float)aFloat

Choosing Which Image Representation to Use
— (void)setPrefersColorMatch:(BOOL)flag
— (BOOL)refersColorMatch

Prepares for drawing iimageRep

Balances a previodsckFocusor
lockFocusOnRepresentation:

Composites the image &Pointusing the operatioap.

Composites thaRectportion of the image taPointusing
the operatiorop.

Composites the image &Pointusing thedissolve
operatoraFloatis a value from 0.0 to 1.0 that
determines how much of the resulting composite comes
from the receiver.

Composites thaRectportion of the image taPointusing
thedissolveoperatoraFloatis a value from 0.0 to 1.0
that determines how much of the resulting composite
comes from the receiver.

Determines whether color matches are preferred.

Returns whether color matches are preferred.

— (voidsetUsesEPSOnResolutionMismatcfBOOL)flag

1-126 Chapter 1: Application Kit

Sets whether to use EPS representations on mismatch.

OpensStep Specification—10/19/94

— (BOOL)usesEPSOnNResolutionMismatch Returns whether to use EPS representations on mismatch.

— (void)setMatchesOnMultipleResolution(BOOL)flag
Sets whether resolution multiples match.

— (BOOL)matchesOnMultipleResolution Returns whether resolution multiples match.

Getting the Representations

— (NSImageRep HestRepresentationForDevicéNSDictionary *deviceDescription
Returns the best representation for the device described by
deviceDescriptionlf deviceDescriptioris nil, the
current device is assumed. 3¢8Graphics.hfor
appropriate dictionary keys and values.

— (NSArray *representations Returns an array of all the representations.

— (voidyemoveRepresentation{NSImageRep *jnageRep
RemovesmageRegdrom the receiver’s list of

representations.
Determining How the Image is Stored
— (voidsetCachedSeparatel((BOOL)flag Sets whether representations are cached separately.
— (BOOL)sCachedSeparately Returns whether representations are cached separately.
— (voidsetDataRetained(BOOL)flag Sets whether image data is retained by the object after the

image is cached.
— (BOOL)sDataRetained Returns whether image data is retained.

— (voidsetCacheDepthMatchesimageDeptiBOOL)flag
Sets whether the default depth limit applies to caches.

— (BOOL)cacheDepthMatchesimageDepth Returns whether the default depth limit applies to caches.

Determining How the Image is Drawn

— (BOOL)sValid Returns YES to indicate that the receiver’s image is valid.
— (void)setScalesWhenResize(BOOL)flag If flag is YES, representations are scaled to fit.
— (BOOL)scalesWhenResized Returns whether representations are scaled to fit.

— (voidsetBackgroundColor(NSColor *)aColor Sets the background color of the imaga@vlor.

— (NSColor *packgroundColor Returns the background color of the image.

OpenStep Specification—10/19/94 Classes: NSImagel-127

— (BOOL)rawRepresentation{NSImageRep fjnageRep

inRect:(NSRectaRect Overridden to havemageRemraw the representation in
aRect
— (voidyecache Invalidates caches of all representations, so they will be
redrawn.

Assigning a Delegate
— (void)setDelegate(id)anObject MakesanObjectthe delegate of the NSImage.

— (id)delegate Returns the delegate of the NSimage.

Producing TIFF Data for the Image

— (NSData *YIFFRepresentation Returns a data object containing TIFF for all
representations, using their default compressions.

— (NSData *TIFFRepresentationUsingCompression({NSTIFFCompressiogpmp
factor: (floatjaFloat Returns a data object containing TIFF for all the
representations.

Managing NSImageRep Subclasses

+ (NSArray *imageUnfilteredFileTypes Returns an array of file types recognized by the NSIimage
without filtering. This list comes from all registered
NSImageReps.

+ (NSArray *JmageUnfilteredPasteboardTypes
Returns an array of pasteboard types recognized by the
NSImage.

Testing Image Data Sources

+ (BOOL)canInitWithPasteboard: (NSPasteboard pasteboard
Returns YES if the receiver can create a representation
from pasteboargdotherwise, returns NO.

+ (NSArray *JmageFileTypes Returns an array of supported image data file types.

+ (NSArray *imagePasteboardTypes Returns an array of supported pasteboard types.
Methods Implemented by the Delegate

— (NSImage *imageDidNotDraw:(id)sender Responds to message timtigecouldn’t be composited
inRect:(NSRectaRect into aRect

1-128 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSImageRep

Inherits From:

Conforms To:

Declared In:

Class Description

NSImageRep is an abstract superclass; each of its subclasses knows how to draw an image from a particular kind
of source data. While an NSImageRep subclass can be used directly, it's typically used through an NSIimage object.

NSObject

NSCoding, NSCopying
NSObject (NSObject)

AppKit/NSImageRep.h

An NSImage manages a group of representations, choosing the best one for the current output device.

There are four subclasses defined in the Application Kit:

Subclass

NSBitmaplmageRep
NSEPSImageRep
NSCustomimageRep
NSCachedlmageRep

Source Data

Tag Image File Format (TIFF) and other bitmap data
Encapsulated PostScript code (EPS)

A delegated method that can draw the image

A rendered image, usually in an off-screen window

You can define other NSImageRep subclasses for objects that render images from other types of source
information. New subclasses must be added to the NSImageRep class registry by invoking the

registerimageRepClassclass method. The NSImageRep subclass informs the registry of the data types it can

support through itsnageUnfilteredFileTypes imageUnfilteredPasteboardTypesandcaninitWithData: class

methods. Once an NSImageRep subclass is registered, an instance of that subclass is created anytime NSimage

encounters the type of data handled by that subclass.

Creating an NSImageRep

+ (id)imageRepWithContentsOfFile(NSString *¥ilename

OpenStep Specification—10/19/94

In subclasses that respondrttageFileTypesand
imageRepWithData;, returns an object that has been
initialized with the data ifilename NSImageRep’s
implementation returns an instance of the appropriate
registered subclass.

Classes: NSImageRep-129

+ (NSArray *imageRepsWithContentsOfFile(NSString *¥ilename

In subclasses that respondrttageFile Typesand
imageRepWithData: (orimageRepWithData)),
returns an array of objects that have been initialized
with the data iffilename NSImageRep’s
implementation returns an array of objects (each an
instance of the appropriate registered subclass) that
have been initialized with the datafiename

+ (id)imageRepWithPasteboard{NSPasteboard pasteboard
In subclasses that respondrtagePasteboardTypesnd
imageRepWithData;, returns an object that has been
initialized with the data ipasteboard NSImageRep’s
implementation returns an instance of the appropriate
registered subclass.

+ (NSArray *imageRepsWithPasteboardNSPasteboard pasteboard
In subclasses that respondriagePasteboardTypesind

imageRepsWithData: (orimageRepWithData)),
returns an array of objects that have been initialized
with the data irpasteboard NSImageRep’s
implementation returns an array of objects (each an
instance of the appropriate registered subclass) that
have been initialized with the datagasteboard

Checking Data Types

+ (BOOL)canInitwWithData: (NSData *fata Overridden in subclasses to return YES if the receiver can
initialize itself fromdata

+ (BOOL)canInitWithPasteboard: (NSPasteboard pasteboard
Overridden in subclasses to returnYES if the receiver can
initialize itself frompasteboard

+ (NSArray *JimageFileTypes Returns an array of strings representing all file types.

+ (NSArray *JmagePasteboardTypes Returns an array of strings representing all pasteboard
types.

+ (NSArray *imageUnfilteredFileTypes Returns an array of strings representing directly supported
file types.

+ (NSArray *JimageUnfilteredPasteboardTypes Returns an array of strings representing directly supported
pasteboards.

1-130 Chapter 1: Application Kit OpensStep Specification—10/19/94

Setting the Size of the Image
— (void)setSize{NSSizepSize
— (NSSizejize

Specifying Information about the Representation
— (int)bitsPerSample
— (NSString *rolorSpaceName
— (BOOL)hasAlpha
— (BOOL)sOpaque
— (int)pixelsHigh
— (int)pixelsWide
— (void)setAlpha:(BOOL)flag

— (void)setBitsPerSampleint)anint

— (void)setColorSpaceNamdgNSString *)aString
— (voidsetOpaque(BOOL)flag
— (void)setPixelsHigh{int)anint

— (void)setPixelsWide(int)anint

Drawing the Image

— (BOOL)Ydraw
— (BOOL)drawAtPoint: (NSPointaPoint

— (BOOL)YrawInRect: (NSRectaRect

OpenStep Specification—10/19/94

Sets the size of the image.

Returns the size of the image.

Returns the number of bits per pixel in each component.

Returns the name of the image’s color space.
Returns whether there is a coverage component.
Returns whether the representation is opaque.
Returns the height specified in the image data.
Returns the width specified in the image data.

Informs the receiver whether there is a coverage
component.

Informs the receiver there aa@lnt bits/pixel in a
component.

Informs the receiver of the image’s color space.
Informs the receiver of the image’s opacity.

Informs the receiver that its data is for an imaggt
pixels high.

Informs the receiver that its data is for an imagnt
pixels wide.

Implemented by subclasses to draw the image.

Modifies current coordinates so the image is drawn at
aPoint

Modifies current coordinates so the image is drawn in
aRect

Classes: NSImageRep-131

Managing NSIimageRep Subclasses

+ (ClassimageRepClassForDatafNSData *fata Returns the NSImageRep subclass that handles data of type
data

+ (ClassimageRepClassForFile Typeg(NSString *type
Returns the NSimageRep subclass that handles data of file

typetype

+ (ClassimageRepClassForPasteboard Typ€NSString *Yype
Returns the NSImageRep subclass that handles data of

pasteboard typg/pe

+ (void)registerimageRepClasgClassjmageRepClass
AddsimageRepClast the registry of available
NSImageRep classes. This method posts the
NSImageRepRegistryChangedNotification notification
with the receiving object to the default notification
center.

+ (NSArray *registeredlmageRepClasses Returns the names of the registered NSImageRep classes.

+ (void)unregisterimageRepClasgClassimageRepClass
RemovesmageRepClasom the registry of available
NSImageRep classes. This method posts the
NSImageRepRegistryChangedNotification notification
with the receiving object to the default notification
center.

1-132 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSMatrix

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSMatrix.h

Class Description

NSMatrix is a class used for creating groups of NSCells that work together in various ways. It includes methods
for arranging NSCells in rows and columns, either with or without space between them. NSCells in an NSMatrix
are numbered by row and column, each starting with 0; for example, the top left NSCell would be at (0, 0), and the
NSCell that's second down and third across would be at (1, 2).

The cell objects that an NSMatrix contains are usually of a single subclass of NSCell, but they can be of multiple
subclasses of NSCell. The only restriction is that all cell objects must be the same size. An NSMatrix can be set up
to create new NSCells by copying a prototype object, or by allocating and initializing instances of a specific NSCell
class.

An NSMatrix adds to NSControl's target/action paradigm by allowing a separate target and action for each of its
NSCells in addition to its own target and action. It also allows for an action message that's sent when the user
double-clicks an NSCell, and which is sent in addition to the single-click action message. If an NSCell doesn't have
an action, the NSMatrix sends its own action to its own target. If an NSCell doesn’t have a target, the NSMatrix
sends the NSCell’s action to its own target. The double-click action of an NSMatrix is always sent to the target of
the NSMatrix.

Since the user might press the mouse button while the cursor is within the NSMatrix and then drag the mouse
around, NSMatrix offers four “selection modes” that determine how NSCells behave when the NSMatrix is
tracking the mouse:

* NSTrackModeMatrix is the most basic mode of operation. In this mode the NSCells are asked to track the
mouse withtrackMouse:inRect:ofView:untilMouseUp: whenever the mouse is inside their bounds. No
highlighting is performed. An example of this mode might be a “graphic equalizer” NSMatrix of sliders,
where moving the mouse around causes the sliders to move under the mouse.

» NSHighlightModeMatrix is a modification of NSTrackModeMatrix. In this mode, an NSCell is highlighted
before it's asked to track the mouse, then unhighlighted when it's done tracking. This is useful for multiple
unconnected NSCells that use highlighting to inform the user that they are being tracked (like push-buttons
and switches).

* NSRadioModeMatrix is used when you want no more than one NSCell to be selected at a time. It can be
used to create a set of buttons of which one and only one is selected (there’s the option of allowing no button
to be selected). Any time an NSCell is selected, the previously selected NSCell is unselected. The canonical
example of this mode is a set of radio buttons.

OpenStep Specification—10/19/94 Classes: NSMatrix 1-133

* NSListModeMatrix is the opposite of NSTrackModeMatrix. NSCells are highlighted, but don’t track the
mouse. This mode can be used to select a range of text values, for example. NSMatrix supports the standard
multiple-selection paradigms of dragging to select, using the shift key to make discontinuous selections, and

using the alternate key to extend selections.

Initializing the NSMatrix Class
+ (ClassgellClass

+ (void)setCellClass(Classtlassid

Initializing an NSMatrix Object
— (id)initWithFrame: (NSRectjrameRect

— (id)initwithFrame: (NSRectjrameRect
mode;(int)aMode
cellClass(Classtlassld
numberOfRows:(int)rowsHigh
numberOfColumns:(int)colsWide

— (id)initwithFrame: (NSRectjrameRect
mode(int)aMode
prototype:(NSCell *)aCell
numberOfRows:(int)rowsHigh
numberOfColumns:(int)colsWide

Setting the Selection Mode
— (NSMatrixModeinode
— (void)setMode(NSMatrixModepMode

Configuring the NSMatrix
— (BOOLallowsEmptySelection
— (BOOL)isSelectionByRect

— (void)setAllowsEmptySelection(BOOL)flag

— (void)setSelectionByRec{BOOL)flag

1-134 Chapter 1: Application Kit

Returns the default class used to make cells.

Sets the default class used to make cells.

Initializes a new NSMatrix object iinameRect

Initializes a new NSMatrix object iinameRegtwith
aModas the selection modeassldas the class used
to make new cells, and havingwsHighrows and
colswideolumns.

Initializes a new NSMatrix object with the given values
with aModeas the selection modaCell as the
prototype copied to make new cells, and having
rowsHighrows andcolsWidecolumns.

Returns the selection mode of the matrix.

Sets the selection mode of the matrix.

Returns whether it's possible to have no cells selected.
Returns whether a user can drag a rectangular selection.
Sets whether it's possible to have no cells selected.

Sets whether a user can drag a rectangular selection (the
default is YES). Iflag is NO, selection is on a
row-by-row basis.

OpensStep Specification—10/19/94

Setting the Cell Class

— (ClassgellClass Returns the subclass of NSCell used to make new cells.
— (id)prototype Returns the prototype cell copied to make new cells.

— (void)setCellClass(Classtlassid Sets the subclass of NSCell used to make new cells.

— (void)setPrototype(NSCell *)aCell Sets the prototype cell copied to make new cells.

Laying Out the NSMatrix

— (void)addColumn Adds a new column of cells to the right of the last column.

— (voidjaddColumnWithCells: (NSArray *)cellArray Adds a new column of cells, using those contained in
cellArray.

— (voidyaddRow Adds a new row of cells below the last row.

— (voidaddRowWithCells:(NSArray *)cellArray Adds a new rovof cells, using those contained in

cellArray.
— (NSRectyellFrameAtRow:(int)row Returns the frame rectangle of the celloat andcolumn
column:(int)column
— (NSSizegellSize Returns the width and height of cells in the matrix.
— (voidgetNumberOfRows{int *)rowCount Gets the number of rows and columns in the matrix.
columns(int *)columnCount
— (void)insertColumn:(int)column Inserts a new column of cells@ilumn creating as many

as needed to make the matdlumncolumns wide.

— (void)nsertColumn:(int)columnwithCells: (NSArray *)cellArray
Inserts a new row of cells alumn using those contained
in cellArray.

— (void)insertRow:(int)row Inserts a new row of cells aiw, creating as many as
needed to make the matrow rows wide.

— (void)insertRow:(int)row withCells: (NSArray *)cellArray
Inserts a new row of cells adw, using those contained in

cellArray.
— (NSSizeintercellSpacing Returns the vertical and horizontal spacing between cells
— (NSCell *makeCellAtRow:(int)row Creates a new cell egw, columnin the matrix and returns
column:(int)column it.
— (void)putCell: (NSCell *)newCell Replaces the cell aw andcolumnwith newCell

atRow:(int)row
column:(int)column

OpenStep Specification—10/19/94 Classes: NSMatrix 1-135

— (voidyemoveColumn:(int)column
— (voidyemoveRow{int)row

— (voidyenewRows(int)newRows
columns;(int)jnewColumns

— (voidsetCellSize(NSSizenSize

— (void)setintercellSpacing(NSSizeaSize

Removes the column ablumn releasing the cells.
Removes the row abw, releasing the cells.

Changes the number of rows and columns in the receiver
without freeing any cells.

Sets the width and height of all cells in the matrix.

Sets the vertical and horizontal spacing between cells.

— (void)sortUsingFunction:(int (*)(id elementlid element2void *userDatg)comparator

context:(void *)context

— (void)sortUsingSelector(SEL)comparator

Finding Matrix Coordinates

— (BOOL)getRow:(int *)row
column:(int *)column
forPoint: (NSPointaPoint

— (BOOL)getRow:(int *)row
column:(int *)column
ofCell:(NSCell *)aCell

Modifying Individual Cells

— (void)setState(int)value
atRow:(int)row
column:(int)column

Selecting Cells
— (void)deselectAllCells

— (void)deselectSelectedCell
— (void)selectAll:(id)sender

— (void)selectCellAtRow{int)row
column:(int)column

— (BOOL)selectCellwithTag:(int)anint

1-136 Chapter 1: Application Kit

Sorts the receiver’s cells in ascending order as defined by
the comparison functiocomparator contextis passed
as the function’s third argument.

Sorts the receiver’s cells in ascending order as defined by
the comparison methambmparator

Gets the row and column position correspondingfoint
Returns YES ifaPointis within the matrix;
NO otherwise.

Gets the row and column positionaCell.
Returns YES ifaCellis in the matrix; NO otherwise.

Sets the state of the cellratv andcolumnto value

Clears the receiver’s selection, assuming that the NSMatrix
allows an empty selection.

Deselects the selected cell.
Selects all the cells in the matrix.

Selects the cell abw andcol.

Selects the cell with the tamint

OpensStep Specification—10/19/94

— (id)selectedCell

— (NSArray *selectedCells

— (int)selectedColumn

— (int)selectedRow

— (void)setSelectionFrom(int)startPos
to:(int)endPos
anchor:(int)anchorPos
highlight: (BOOL)flag

Finding Cells

— (id)cellAtRow: (int)row
column:(int)column

— (id)cellWithTag: (int)anint
— (NSArray *xells

Modifying Graphic Attributes
— (NSColor *packgroundColor
— (NSColor *rellBackgroundColor
— (BOOL)rawsBackground

— (BOOL)YrawsCellBackground

Returns the most recently selected cetibif no cell has
been selected.

Returns an array containing the selected cells.

Returns the column of the selected cell or —1 if no column
has been selected.

Returns the row of the selected cell or -1 if no row has been
selected.

Selects the cells in the matrix frastartPosto endPos
counting in row order from the upper left, as though
anchorPosere the number of the last cell selected, and
highlighting the cells according ftag.

Returns the cell at rovow and columrcol.

Returns the cell havinanintas its tag.

Returns the matrix’s array of cells.

Returns the color of the background between cells.
Returns the color of the background within cells.

Returns whether the receiver draws the background
between cells.

Returns whether the receiver draws the background within
cells.

— (void)setBackgroundColor(NSColor *)aColor Sets the color of the background between celigolor.

— (voidsetCellBackgroundColor(NSColor *)aColor
Sets the color of the background within cella@olor.

— (void)setDrawsBackground(BOOL)flag Sets whether the receiver draws the background between

cells.

— (void)setDrawsCellBackground(BOOL)flag Sets whether the receiver draws the background within
cells.

OpenStep Specification—10/19/94 Classes: NSMatrix 1-137

Editing Text in Cells
— (void)selectText(id)sender Selects the text in the first or last editable cell.

— (id)selectTextAtRow{int)row Selects the text of the cell @i, columnin the matrix.
column:(int)column

— (void)textDidBeginEditing: (NSNotification *notification

Invoked when there’s a change in the text after the receiver
gains first responder status. Default behavior is pass to
this message on to the text delegate. This method posts
the NSControlTextDidBeginEditingNotification
notification with the receiving object and, in the
notification’s dictionary, the text object (with the key
NSFieldEditor) to the default notification center.

— (void)textDidChange:(NSNotification *notification
Invoked upon a key-down event or paste operation that

changes the receiver’s contents. Default behavior is to
pass this message on to the text delegate. This method
posts the NSControlTextDidChangeNotification
notification with the receiving object and, in the
notification's dictionary, the text object (key
NSFieldEditor) to the default notification center.

— (voidtextDidEndEditing: (NSNaotification *notification
Invoked when text editing ends and then forwarded to the
text delegate. This method posts the natification
NSControlTextDidEndEditingNotification with the
receiving object and, in the notification’s dictionary, the
text object (with the key NSFieldEditor) to the default
notification center.

— (BOOL)extShouldBeginEditing:(NSText *}textObject
Invoked to let the NSTextField respond to impending

changes to its text and then forwarded to the text
delegate.

— (BOOL)textShouldEndEditing: (NSText *}textObject
Invoked to let the NSTextField respond to impending loss

of first responder status and then forwarded to the text
delegate.

Setting Tab Key Behavior

— (id)nextText Returns the object to be selected when the user presses Tab
while editing the last text cell.

1-138 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (id)previousText

— (void)setNextText(id)anObject

— (void)setPreviousText(id)anObject

Assigning a Delegate
— (void)setDelegateiid)anObject
— (id)delegate

Resizing the Matrix and Cells
— (BOOL)autosizesCells
— (void)setAutosizesCell{fBOOL)flag
— (void)setValidateSize(BOOL)flag
— (void)sizeToCells

Scrolling

— (BOOL)isAutoscroll

— (void)scrollCellToVisibleAtRow: (int)row

column:(int)column

— (void)setAutoscroll:(BOOL)flag

— (void)setScrollable(BOOL)flag

Displaying

— (void)rawCellAtRow: (int)row
column:(int)column

— (void)ighlightCell: (BOOL)flag
atRow:(int)row
column:(int)column

OpenStep Specification—10/19/94

Returns the object to be selected when the user presses
Shift-Tab while editing the first text cell.

Sets the object to be selected when the user presses Tab
while editing the last text cell.

Sets the object to be selected when user presses Shift-Tab
while editing the first text cell.

Sets the delegate for messages from the field editor.

Returns the delegate for messages from the field editor.

Returns whether the matrix resizes its cells automatically.
Sets whether the matrix resizes its cells automatically.
Sets whether the cell size needs to be recalculated.

Resizes the matrix to fit its cells exactly.

Returns whether the matrix automatically scrolls when
dragged in.

Scrolls the matrix so that the cellratv andcolumnis
visible.

Sets whether the matrix automatically scrolls when
dragged in.

If flagis YES, makes all the cells scrollable.

Displays the cell atow andcol.

Highlights (or unhighlights) the cell aw, col.

Classes: NSMatrix 1-139

Target and Action
— (SELYoubleAction
— (void)setDoubleAction(SEL)aSelector
— (SEL)rrorAction
— (BOOL)sendAction

— (voidsendAction(SEL)aSelector
to:(id)anObject
forAllCells: (BOOL)flag

— (voidsendDoubleAction
— (void)setErrorAction: (SEL)aSelector

Handling Event and Action Messages

— (BOOL)acceptsFirstMouse{NSEvent *fheEvent

— (void)mouseDown(NSEvent *fheEvent

— (intmouseDownFlags

Returns the action method for double clicks.
Sets the action method used on double-clickeSelector
Returns the action method for editing errors.

Sends the selected cell’s action, or the NSMatrix’s action if
the cell doesn’t have one.

SendsaSelectoito anObject for all cells ifflagis YES.

Sends the action corresponding to a double-click.

Sets the action method for editing errora&elector

Returns NO only if receiver's mode is NSListModeMatrix.

Responds to a mouse-down event. A mouse-down event in
a text cell initials editing mode. A double-click in any
cell type except a text cell sends the double-click action
of the NSMatrix (if there is one) in addition to the
single-click action.

Returns the event flags in effect at start of tracking.

— (BOOL)YerformKeyEquivalent: (NSEvent *theEvent

Managing the Cursor

— (voidyesetCursorRects

1-140 Chapter 1: Application Kit

Simulates a mouse click in the appropriate cell.

Resets cursor rectangles so that the cursor becomes an
I-beam over text cells.

OpensStep Specification—10/19/94

NSMenu

Inherits From: NSPanel : NSWindow : NSResponder : NSObiject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSMenu.h

Class Description

This class defines an object that manages an application’s menus. An NSMenu object displays a list of items that a
user can choose from. When an item is clicked, it may either issue a command directly or bring up another menu
(asubmenyithat offers further choices. An NSMenu object’s choices are implemented as a column of
NSMenuCells in an NSMatrix.

Each NSMenuCell can be configured to send its action message to a target, or to bring up a submenu. When the
user clicks a submenu item, the submenu is displayed on the screen, attached to its supermenu so that if the user
drags the supermenu, the submenu follows it. A submenu may also be torn away from its supermenu, in which case
it displays a close button.

Exactly one NSMenu created by the application is designated as the main menu for the application (with
NSApplication’ssetMainMenu: method). This menu is displayed on top of all other windows whenever the
application is active, and should never display a close button (because the main menu doesn'’t have a supermenu).

See the NSMenuCell and NSMatrix class specificiations for more details.

Controlling Allocation Zones

+ (NSZone *menuZone Returns the zone from which NSMenus should be
allocated, creating one if necessary.

+ (void)setMenuZone(NSZone *yone Sets the zone from which NSMenus should be allocated.
Initializing a New NSMenu
— (id)initwithTitle: (NSString *gTitle Initializes and returns a new NSMenu uséigtle for its

title.

Setting Up the Menu Commands

— (id)addltemWithTitle: (NSString *)aString Adds a new item with titlaString actionaSelectorand
action:(SEL)aSelector key equivalentharCodeto the end of the NSMenu.
keyEquivalent:(NSString *charCode Returns the new NSMenuCell.

OpenStep Specification—10/19/94 Classes: NSMenul-141

— (id)insertitemWithTitle: (NSString *aString
action:(SEL)aSelector
keyEquivalent:(NSString *charCode
atindex:(unsigned inthdex

— (NSMatrix *)itemMatrix

— (void)setltemMatrix: (NSMatrix *)aMatrix

Finding Menu Items
— (id)cellWithTag: (int)aTag
Building Submenus
— (NSMenuCell *$etSubmenu(NSMenu *aMenu
forltem: (NSMenuCell *pCell

— (void)submenuAction:(id)sender

Managing NSMenu Windows
— (NSMenu *pttachedMenu

— (BOOL)sAttached

— (BOOL)isTornOff

Adds a new item ahdexhaving the titleaString action
aSelectorand key equivalertharCode Returns the
new NSMenuCell.

Returns the NSMatrix of NSMenuCell items.

Replaces the current matrix of items watatrix.

Returns the NSMenuCell that ha@agas its tag.

MakesaMenua submenu controlled &aCell.

Activates a submenu attached to sender’'s NSMenu.

Returns the NSMenu attached to the receiveiilaf
there’s no such object.

Returns YES if the receiver is attached to another menu and
NO otherwise.

Returns NO if the receiver is attached to another menu (or
if it's the main menu) and YES otherwise.

— (NSPointjocationForSubmenu({NSMenu *aSubmenu

— (void)sizeToFit

— (NSMenu *supermenu

Displaying the Menu
— (BOOL)autoenablesltems

— (void)setAutoenablesltemgBOOL)flag

1-142 Chapter 1: Application Kit

Determines where to display an attached submenu when
it's brought up.

Resizes the receiver to exactly fit the command items.

Returns the receiver’'s supermenu.

Returns whether the receiver enables and disables its
NSMenuCells. (See the NSMenuActionResponder
informal protocol.)

Sets whether the receiver enables and disables its
NSMenuCells. (See the NSMenuActionResponder
informal protocol.)

OpensStep Specification—10/19/94

NSMenuCell

Inherits From: NSButtonCell : NSActionCell : NSCell : NSObiject
Conforms To: NSCoding, NSCopying (NSCell)

NSObject (NSObject)
Declared In: AppKit/NSMenuCell.h

Class Description

NSMenuCell is a subclass of NSButtonCell that defines objects that are used in menus. NSMenuCells draw their
text left-justified and show an optional key equivalent or submenu arrow on the right. See the NSMenu class
specification for more information.

Checking for a Submenu

— (BOOLhasSubmenu Returns YES if the receiver has a submenu.

Managing User Key Equivalents

+ (void)setUsesUserKeyEquivalent$BOOL)flag If flagis YES, NSMenuCells conform to user preferences
for key equivalents; otherwise, the key equivalents
originally assigned to the NSMenuCells are used.

+ (BOOL)usesUserKeyEquivalents Returns YES if NSMenuCells conform to user preferences
for key equivalents; otherwise, returns NO.

— (NSString *userKeyEquivalent Returns the user-assigned key equivalent for the
NSMenuCell.

OpenStep Specification—10/19/94 Classes: NSMenuCell-143

NSOpenPanel

Inherits From:

Conforms To:

Declared In:

Class Description

NSSavePanel : NSPanel : NSWindow : NSResponder : NSObject

NSCoding (NSResponder)
NSObject (NSObject)

AppKit/NSOpenPanel.h

NSOpenPanel provides the Open panel of the OpenStep user interface. Applications use the Open panel as a
convenient way to query the user for the name of a file to open. The Open panel can only be run modally.

Most of this class’s behavior is defined by its superclass, NSSavePanel. NSOpenPanel adds to this behavior by:

» Letting you specify the types (by file-name extension) of the items that will appear in the panel

» Letting the user select files, directories, or both

» Letting the user select multiple items at a time

Typically, you access an NSOpenPanel by invokingpgenPanelmethod. When the class receive®panPanel

message, it tries to reuse an existing panel rather than create a new one. If a panel is reused, its attributes are reset
to the default values so that the effect is the same as receiving a new panel. Because Open panels may be reused,
you shouldn’t modify the instance returneddpenPane] except through the methods listed below (and those

inherited from its superclass, NSSavePanel). For example, you can set the panel’s title and whether it allows
multiple selection, but not the arrangement of the buttons within the panel. If you must modify the Open panel
substantially, create and manage your own instance usiajdbe. andinit... methods rather than tepenPanel

method.

Accessing the NSOpenPanel

+ (NSOpenPanel gpenPanel Returns an NSOpenPanel object having default

initialization.
Filtering Files

— (BOOLllowsMultipleSelection Returns YES if the panel allows the user to open multiple
files (and directories) at a time.

— (BOOL)anChooseDirectories Returns YES if the panel allows the user to choose
directories.

— (BOOL)anChooseFiles Returns YES if the panel allows the user to choose files.

1-144 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (void)setAllowsMultipleSelection{(BOOL)flag

— (voidsetCanChooseDirectoriegBOOL)flag
— (voidsetCanChooseFilegBOOL)flag

Querying the Chosen Files

— (NSArray *¥ilenames

Running the NSOpenPanel
— (intrunModalForTypes: (NSArray *YileTypes

— (int)runModalForDirectory: (NSString *path
file:(NSString *filename
types:(NSArray *ffileTypes

OpenStep Specification—10/19/94

Sets whether the user can open multiple files (and
directories) at a time.

Sets whether the user can choose directories.

Sets whether the user can choose files.

Returns an array containing the names of the selected files
and directories.

Invokes theunModalForDirectory:file:types: method,
using the last directory from which a file was chosen as
the path argument. Returns the value returned by that
method.

Displays the panel and begins its event loop. The panel
displays the files ipaththat match the types in
fileType&n array of NSString objects), wififename
selected. Returns NSOKButton (if the user clicks the
OK button) or NSCancelButton (if the user clicks the
Cancel button).

Classes: NSOpenPandl-145

NSPagelLayout

Inherits From: NSPanel : NSWindow : NSResponder : NSObiject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSPagelLayout.h

Class Description

NSPagelLayout is a type of NSPanel that queries the user for information such as paper type and orientation. This
information is stored in an NSPrintInfo object, and is later used when printing. The NSPageLayout panel is created,
displayed, and run (in a modal loop) whemiaPageLayout: message is sent to the NSApplication object. By

default, this message is sent up the responder chain when the user clicks the Page Layout menu item.

Typically, you access an NSPagelLayout panel by invokingageLayoutmethod. When the class receives a
pagelLayoutmessage, it tries to reuse an existing panel rather than create a new one. If a panel is reused, its
attributes are reset to the default values so that the effect is the same as receiving a new panel. Because Page Layout
panels may be reused, you shouldn’t modify the instance returrgabbi.ayout, except through the methods

listed below. If you must modify the Page Layout panel in other ways than those allowed by its methods, create and
manage your own instance using #llec... andinit... methods rather than tipageLayoutmethod.

You can add your own controls to the Page Layout panel througletihecessoryViewmethod. The panel is
automatically resized to accommodate the NSView that you've added. Note that you can't retrieve the
NSPagelLayout’s settings through messages to the page layout panel object—NSPageLayout does not have
accessor methods to obtain the state of its controls. If controls you add through an accessory view need to know the
values of the existing controls in the page layout panel (or vice versa), access NSPagelLayout’s controls using the
tags defined iM\ppKit/NSPageLayout.ls arguments tgewWithTag: messages to the page layout panel

object. Controls thus returned can then be queried for their state.

Creating an NSPageLayout Instance

+ (NSPagelLayout PagelLayout Returns a default NSPagelLayout object.

Running the Panel

— (inthrunModal Displays the panel and begins its event loop. The panel's
values are recorded in the shared NSPrintInfo object.

— (inthrunModalWithPrintinfo: (NSPrintinfo *)pinfo
Displays the panel and begins its event |ddpe panel's
values are recorded in tpénfo, the supplied
NSPrintInfo object.

1-146 Chapter 1: Application Kit OpensStep Specification—10/19/94

Customizing the Panel
— (NSView *)accessoryView

— (void)setAccessoryView(NSView *)aView
Updating the Panel’s Display

— (void)convertOldFactor: (float *)old
newFactor:(float *)new

— (void)pickedButton:(id)sender

— (void)pickedOrientation: (id)sender
— (void)pickedPaperSizefid)sender
— (void)pickedUnits:(id)sender

Communicating with the NSPrintinfo Object
— (NSPrintInfo *printinfo

— (voidyeadPrintinfo

— (voidwritePrintInfo

OpenStep Specification—10/19/94

Returns the NSPagelLayout’s accessory View.

Adds a View to the panel.

Returns by reference the ratio between a point and the
currently chosen unit of measurement. If invoked within
thepickedUnits: methodold refers to the ratio before
the user’s choice antewrefers to the new ratio.

Stops the event loop.
Updates the panel with the selected orientation.
Updates the panel when a paper size is selected.

Updates the panel when a new unit is selected.

Returns the NSPrintinfo object that used when the panel is
run.

Reads the NSPageLayout’s values from the NSPrintinfo
object.

Writes the NSPagelLayout’s values to the NSPrintinfo
object.

Classes: NSPageLayouit-147

NSPanel

Inherits From: NSWindow : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSPanel.h

Class Description

The NSPanel class defines objects that manage the panels of the OpenStep user interface. A panel is a window that
serves an auxiliary function within an application. It generally displays controls that the user can act on to give
instructions to the application or to modify the contents of a standard window.

Panels behave differently from standard windows in only a small number of ways, but the ways are important to
the user interface:

» Panels can assume key window—nbut not main window—status. (The key window receives keyboard events.
The main window is the primary focus of user actions; it might contain the document the user is working on,
for example.)

e On-screen panels are normally removed from the screen list when the user begins to work in another
application, and are restored to the screen when the user returns to the panel’s application.

To aid in their auxiliary role, panels can be assigned special behaviors:

» Apanel can be precluded from becoming the key window until the user makes a selection (makes some view
in the panel the first responder) indicating an intention to begin typing. This prevents key window status from
shifting to the panel unnecessarily.

« Palettes and similar panels can be made to float above standard windows and other panels. This prevents
them from being covered and keeps them readily available to the user.

» A panel can be made to work—to receive mouse and keyboard events—even when there’s an attention panel
on-screen. This permits actions within the panel to affect the attention panel.

1-148 Chapter 1: Application Kit OpensStep Specification—10/19/94

Determining the Panel Behavior
— (BOOL)ecomesKeyOnlylfNeeded
— (BOOL)isFloatingPanel
— (voidsetBecomesKeyOnlylfNeededBOOL)flag
— (void)setFloatingPanel(BOOL)flag
— (voidsetWorksWhenModal:(BOOL)flag

— (BOOL)worksWhenModal

OpenStep Specification—10/19/94

Returns whether the receiver waits to become key window.
Returns whether the receiver floats above other windows.
Sets whether the receiver waits to become key window.
Sets whether the receiver floats above other windows.

Sets whether the receiver can operate even when an
attention panel is on-screen.

Returns whether the receiver can operate even when an
attention panel is on-screen. The default is NO.

Classes: NSPanell-149

NSPasteboard

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSPasteboard.h

Class Description

NSPasteboard objects transfer data to and from the pasteboard server. The server is shared by all running
applications. It contains data that the user has cut or copied and may paste, as well as other data that one application
wants to transfer to another. NSPasteboard objects are an application’s sole interface to the server and to all
pasteboard operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it's to be used. Each set of data and its
associated name is, in effect, a separate pasteboard, distinct from the others. An application keeps a separate
NSPasteboard object for each named pasteboard that it uses. There are five standard pasteboards in common use:

General pasteboard The pasteboard that’s used for ordinary cut, copy, and paste operations. It holds
the contents of the last selection that’s been cut or copied.

Font pasteboard The pasteboard that holds font and character information and supports the
Copy Font and Paste Font commands.

Ruler pasteboard The pasteboard that holds information about paragraph formats in support of
the Copy Ruler and Paste Ruler commands.

Find pasteboard The pasteboard that holds information about the current state of the active
application’s Find panel. This information permits users to enter a search string
into the Find panel, then switch to another application to conduct the search.

Drag pasteboard The pasteboard that stores data to be manipulated as the result of a drag
operation.

Each standard pasteboard is identified by a unique name (stored in global string objects):

NSGeneralPboard
NSFontPboard
NSRulerPboard
NSFindPboard
NSDragPboard

You can create private pasteboards by asking for an NSPasteboard object with any name other than those listed
above. The name of a private pasteboard can be passed to other applications to allow them to share the data it holds.

1-150 Chapter 1: Application Kit OpensStep Specification—10/19/94

The NSPasteboard class makes sure there’s never more than one object for each named pasteboard. If you ask for
a new object when one has already been created for the pasteboard with that name, the existing object will be
returned to you.

Data Types

Data can be placed in the pasteboard server in more than one representation. For example, an image might be
provided both in Tag Image File Format (TIFF) and as encapsulated PostScript code (EPS). Multiple
representations give pasting applications the option of choosing which data type to use. In general, an application
taking data from the pasteboard should choose the richest representation it can handle—rich text over plain ASCI|,
for example. An application putting data in the pasteboard should promise to supply it in as many data types as
possible, so that as many applications as possible can make use of it.

Data types are identified by string objects containing the full type name. These global variables identify the string
objects for the standard pasteboard types:

Type Description

NSStringPboardType NSString data
NSPostScriptPboardType Encapsulated PostScript code (EPS)
NSTIFFPboardType Tag Image File Format (TIFF)
NSRTFPboardType Rich Text Format (RTF)
NSFilenamesPboardType ASCII text designating one or more file names
NSTabularTextPboardType Tab-separated fields of ASCII text
NSFontPboardType Font and character information
NSRulerPboardType Paragraph formatting information
NSFileContentsPboardType A representation of a file’s contents
NSColorPboardType NSColor data

NSGeneralPboardType Describes a selection
NSDataLinkPboardType Defines a link between documents

Types other than those listed can also be used. For example, your application may keep data in a private format
that’s richer than any of the types listed above. That format can also be used as a pasteboard type.

Reading and Writing Data

Typically, data is written to the pasteboard usietpata:forType: and read usindataForType:. However, data
of the type NSFileContentsPboardType, representing the contents of a named file, must be written to the
NSPasteboard object usingiteFileContents: and copied from the object to a file using
readFileContentsType:toFile.

Errors

Except where errors are specifically mentioned in the method descriptions, any communications error with the
pasteboard server raises an NSPasteboardCommunicationException exception.

OpenStep Specification—10/19/94 Classes: NSPasteboari-151

Creating and Releasing an NSPasteboard Object
+ (NSPasteboard generalPasteboard Returns the general NSPasteboard.

+ (NSPasteboard pasteboardWithName(NSString *name
Returns the NSPasteboard namache

+ (NSPasteboard pasteboardWithUnigueName Returns a uniquely named NSPasteboard.

— (voidyeleaseGlobally Releases the NSPasteboard and its resources in the
pasteboard server.

Getting Data in Different Formats

+ (NSPasteboard pasteboardByFilteringData:(NSData *fata
of Type:(NSString *type Returns an NSPasteboard that contains data of all types
filterable fromdataof typetype

+ (NSPasteboard ppsteboardByFilteringFile:(NSString *filename
Returns an NSPasteboard that contains data of all types
filterable fromfilename

+ (NSPasteboard pasteboardByFiltering TypesIinPasteboard{NSPasteboard ppoard
Returns an NSPasteboard that contains data of all types
filterable frompboard

+ (NSArray *typesFilterableTo:(NSString *type Returns an array specifying all typgpecan be filtered to.

Referring to a Pasteboard by Name

— (NSString *pame Returns the NSPasteboard’s name.
Writing Data
— (int)addTypes(NSArray *)newTypes Adds data types to the NSPasteboard and declares a new
owner:(id)newOwner owner. Returns the new change count or O in case of
error.
— (int)declareTypes(NSArray *)newTypes Sets the data types and owner of the NSPasteboard and
owner:(id)newOwner returns the new change count.
— (BOOL)setData{NSData *fata Writes data of typéataTypeo the pasteboard server from
forType: (NSString *dataType dataReturns YES if the data is successfully written;
otherwise returns NO.
— (BOOL)setPropertyList:(id)propertyList Writes data of typeataTypeto the pasteboard server from
forType: (NSString *dataType propertyList Returns YES if the data is successfully

written; otherwise returns NO.

1-152 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (BOOL)setString:(NSString *)string Writes data of typéataTypeo the pasteboard server from
forType: (NSString *dataType string. Returns YES if the data is successfully written;
otherwise returns NO.

— (BOOL)writeFileContents:(NSString *filename Writes data fronfilenameto the pasteboard server.

Determining Types

— (NSString *pvailableTypeFromArray: (NSArray *)types
Returns first type itypesthat matches a type declared in
the receiver.

— (NSArray *types Returns an array of the NSPasteboard’s data types.

Reading Data
— (int)changeCount Returns the NSPasteboard’s change count.

— (NSData *flataForType:(NSString *}dataType Returns NSPasteboard data using the type specified by
dataType

— (id)propertyListForType: (NSString *dataType Returns a property list object using the type specified by
dataType

— (NSString *yeadFileContentsType(NSString *type
toFile:(NSString *¥ilename Reads data of typgperepresenting a file’s contents from
the NSPasteboard and writes ifitename Returns the
actual name of the file that was written.

— (NSString *ptringForType: (NSString *dataType Returns an NSString using the type specifieddtaType

Methods Implemented by the Owner

— (void)asteboard(NSPasteboard $ender Implemented to write promised datastenderastype
provideDataForType:(NSString *type

— (void)pasteboardChangedOwner{NSPasteboard sender
Notifies prior owner that ownership changed.

OpenStep Specification—10/19/94 Classes: NSPasteboari-153

NSPopUpButton

Inherits From: NSButton : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPopUpButton.h

Class Description

The NSPopUpButton class defines objects that implement the pop-up and pull-down lists of the OpenStep graphical
user interface. When configured to display a pop-up list, an NSPopUpButton contains a number of options and
displays as its title the option that was last selected. A pop-up list is often used for selecting items from a small- to
medium-sized set of options (like the zoom factor for a document window). It's a useful alternative to a matrix of
radio buttons or an NSBrowser when screen space is at a premium; a zoom factor pop-up can easily fit next to a
scroll bar at the bottom of a window, for example.

When configured to display a pull-down list, an NSPopUpButton is generally used for selecting commands in a
very specific context. You can think of a pull-down list as a compact form of menu. A pull-down list’s title isn’t
affected by the user’s actions, and a pull-down list always displays a title that identifies the type of commands it
contains. When the commands only make sense in the context of a particular display, a pull-down list can be used
in that display to keep the related actions nearby, and to keep them out of the way when that display isn’t visible.

Initializing an NSPopUpButton

— (id)initWithFrame: (NSRectjrameRect Initializes a newly allocated NSPopUpButton, giving it the
pullsDown:(BOOL)flag frame specified bframeRectlf flagis YES, the
receiver is initialized to operate as a pull-down list;
otherwise, it operates as a pop-up list.

Target and Action

— (SEL)ction Returns the NSPopUpButton’s action method.

— (void)setAction:(SEL)aSelector Sets the NSPopUpButton’s action method$®lector
Adding Items

— (voidjadditemWithTitle: (NSString *Yitle Adds an item withiitle as its title to the end of the item list.

— (voidladdIltemsWithTitles: (NSArray *)itemTitles Adds multiple items to the end of the item list. The titles for
the new items are taken from tiemTitlesarray

1-154 Chapter 1: Application Kit OpensStep Specification—10/19/94

— (void)insertlitemWithTitle: (NSString *Yitle Inserts an item withitle as its title at positiomdex
atindex:(unsigned inthdex

Removing Items

— (voidyemoveAllltems Removes all items in the receiver’s item list.
— (voidyemoveltemWithTitle: (NSString *}itle Removes the item whose title matcliés.
— (voidyemoveltemAtindex:(int)index Removes the item at the specified index.

Querying the NSPopUpButton about Its Items

— (int)indexOfltemWithTitle: (NSString *}itle Returns the index of the item whose title matditks or
—1 if no match is found.

— (int)indexOfSelectedltem Returns the index of the item last selected by the user, or -1
if there’s no selected item.

— (inthhumberOfltems Returns the number of items in the receiver’s item list.

— (NSMenuCell *jtemAtindex: (int)index Returns the NSMenuCell for the itemiadex or nil if no
such item exists.

— (NSMatrix *)itemMatrix Returns the NSMatrix that holds the receiver’s items.

— (NSString *temTitleAtIndex: (int)index Returns the title of the item midex or the empty string if
no such item exists.

— (NSArray *jtemTitles Returns an NSArray that holds the titles of the receiver’s
items.

— (NSMenuCell *jtemWithTitle: (NSString *}litle Returns the NSMenuCell for the item whose titlétis, or
nil if no such item exists

— (NSMenuCell *Jastitem Returns the NSMenuCell corresponding to the last item in
the list.

— (NSMenuCell *}electedltem Returns the NSMenuCell for the selected item.

— (NSString *JitleOfSelectedltem Returns the title of the item last selected by the user, or the

empty string if there’s no such item.

Manipulating the NSPopUpButton
— (NSFont *jont Returns the font used to draw the items.

— (BOOL)pullsDown Returns YES if the receiver is configured as a pull-down
list, and NO if it's configured as a pop-up list.

OpenStep Specification—10/19/94 Classes: NSPopUpButtori-155

— (void)selectltemAtindex:(int)index

— (void)selectlitemWithTitle: (NSString *}itle

— (void)setFont(NSFont *fontObject
— (void)setPullsDown(BOOL)flag

— (void)setTarget:(id)anObject
— (void)setTitle:(NSString *)aString

— (NSString *ytringValue

— (void)synchronizeTitleAndSelectedltem

— (id)target

Displaying the NSPopUpButton’s Items
— (BOOL)autoenablesltems

— (void)setAutoenablesltemgBOOL)flag

1-156 Chapter 1: Application Kit

Selects the item @&dexand invokes
synchronizeTitleAndSelectedltem

Selects the item whose titletile and invokes
synchronizeTitleAndSelectedltem

Sets the font used to draw the items.

If flagis YES, the receiver is configured as a pull-down list.
If flagis NO, the receiver is configured as a pop-up list.

Sets the target for action messagesn@bject

Adds a new item (if the receiver doesn't already have an
item titledaString, makes it the selected item, and
invokessynchronizeTitleAndSelecteditem

Returns the title of the selected item.

Ensures that the receiver’s title agrees with the title of the
selected item (séadexOfSelectedlten). If there’s no
selected item, this method selects the first item in the
item list and sets the receiver’s title to match. This
method is useful in subclasses that directly select items
in the item matrix or that overrideetTitle:.

Returns the target for action messages.

Returns whether the NSPopUpButton enables and disables
its items. (See the NSMenuActionResponder informal
protocol.)

Sets whether the NSPopUpButton enables and disables its
items. (See the NSMenuActionResponder informal
protocol.)

OpensStep Specification—10/19/94

NSPrinter

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrinter.h

Class Description

An NSPrinter object describes a printer’s capabilities, such as whether the printer can print in color and whether it
provides a particular font. An NSPrinter object represents either a particular make or type of printer, or an actual
printer available to the computer.

There are two ways to create an NSPrinter:

» To create an abstract object that provides information about a type of printer rather than an object that
represents an actual printer device, useptigerWithType: class method, passing a printer type (an
NSString) as the argument. ThenterTypes class method provides a list of the printer types recognized
by the computer. Printer types are described in files written in PostScript Printer Description (PPD) format.
The location of these files is platform dependent.

» To create or find an NSPrinter that corresponds to an actual printer device,pragé¢nd/ithName: class
method, passing the name of a printer. The way you find out what the available printer names are depends
on the platforms you are using.

Once you have an NSPrinter, there’s only one thing you can do with it: Retrieve information regarding the type of
printer or regarding the actual printer the object represents. You can’t change the information in an NSPrinter, nor
can you use an NSPrinter to initiate or control a printing job.

When you create an NSPrinter object, the object reads the file that corresponds to the type of printer you specified
and stores the data it finds there in named tables. Printer types are described in files written in the PostScript Printer
Description (PPD) format. Any piece of information in the PPD tables can be retrieved through the methods
stringForKey:inTable: andstringListForKey:inTable: , as explained later. Commonly needed items, such as
whether a printer is color or the size of the page on which it prints, are available through more direct methods
(methods such d@sColor andpageSizeForPapel).

Note: To understand what the NSPrinter tables contain, you need to be acquainted with the PPD file format. This
is described iPostScript Printer Description File Format Specification, versionavailable from Adobe Systems
Incorporated. The rest of this class description assumes a familiarity with the concepts and terminology presented
in the Adobe manual. A brief summary of the PPD format is given below; PPD terms defined in the Adobe manual
are shown in italic.

OpenStep Specification—10/19/94 Classes: NSPrinter1-157

PPD Format

A PPD file statement, @ntry, associates @aluewith amain keyword
*mainKeywordvalue

The asterisk is literal; it indicates the beginning of a new entry.

For example:

*ModelName: "MMimeo Machine"
*3dDevice: False

A main keyword can be qualified by aption keyword
*mainKeyword optionKeywordalue

For example:

*PaperDensity Letter: "0.1"
*PaperDensity Legal: "0.2"
*PaperDensity A4: "0.3"
*PaperDensity B5: "0.4"

In addition, any number of entries may have the same main keyword with no option keyword yet give different
values:

*InkName: ProcessBlack/Process Black
*InkName: CustomColor/Custom Color
*InkName: ProcessCyan/Process Cyan
*InkName: ProcessMagenta/Process Magenta
*InkName: ProcessYellow/Process Yellow

Option keywords and values can sgaahslation stringsA translation string is a textual description, appropriate
for display in a user interface, of the option or value. An option or value is separated from its translation string by
a slash:

*Resolution 300dpi/300 dpi: "
*InkName: ProcessBlack/Process Black

In the first example, th@00dpi option would be presented in a user interface as “300 dpi.” The second example
assigns the string “Process Black” as the translation string fétrtoessBlackvalue.

NSPrinter treats entries that have*@mderDependencyor*UIConstraint main keyword specially. Such entries
take the following forms (the bracketed elements are optional):

*QOrderDependencyreal section mainKeyworbptionKeywordl
*UlConstraint:mainKeywordJoptionKeyword] mainKeywordd optionKeyword

1-158 Chapter 1: Application Kit OpensStep Specification—10/19/94

There may be more than one UlConstraint entry with the ssameKeywordlor mainKeyword1/optionKeyword1
value. Below are some examples @frlerDependencyand*UlConstraint entries:

*OrderDependency: 10 AnySetup *Resolution
*UlConstraint: *Option3 None *PageSize Legal
*UlConstraint: *Option3 None *PageRegion Legal

Explaining these entries is beyond the scope of this documentation; however, it's important to note their forms in
order to understand how they're represented in the NSPrinter tables.

NSPrinter Tables

NSPrinter defines five key-value tables to store PPD information. The tables are identified by the names given
below:

Name Contents

PPD General information about a printer type. This table contains the values for all
entries in a PPD filexcept those with the#OrderDependencyand
*UlConstraint main keywords. The values in this table don't include the
translation strings.

PPDOptionTranslation Option keyword translation strings.
PPDArgumentTranslation Value translation strings.
PPDOrderDependency *OrderDependencyvalues.
PPDUIConstraints *UlConstraint values.

There are two principle methods for retrieving data from the NSPrinter tables:
» stringForKey:inTable: returns the value for the first occurrence of a given key in the given table.
» stringListForKey:inTable: returns an array of values, one for each occurrence of the key.

For both methods, the first argument is an NSString that names a key—which part of a PPD file entry the key
corresponds to depends on the table (as explained in the following sections). The second argument names the table
that you want to look in. The values that are returned by these methods, whether singular or in an array, are always
NSStrings, even if the value wasn'’t a quoted string in the PPD file.

The NSPrinter tables store data as ASCII text, thus the two methods described above are sufficient for retrieving
any value from any table. NSPrinter provides a number of other methods, furhemsForKey:inTable: and
intForKey:inTable: , that retrieve single values and coerce them, if possible, into particular data types. The
coercion doesn't affect the data that's stored in the table (it remains in ASCII format).

To check the integrity of a table, use tbiéey:forTable: andstatusForTable: methods. The former returns a
boolean that indicates whether the given key is valid for the given table; the latter returns an error code that
describes the general state of a table (in particular, whether it actually exists).

OpenStep Specification—10/19/94 Classes: NSPrinter1-159

Retrieving Values from the PPD Table

Keys for the PPD table are strings that name a main keyword or main keyword/option keyword pairing (formatted
as ‘mainKeywordoptionKeyword). In both cases, you exclude the main keyword asterisk. The following example
creates an NSPrinter and involstsngForKey:inTable: to retrieve the value for an un-optioned main keyword:

/* Create an NSPrinter object for a printer type. */
NSPrinter *prType = [NSPrinter
printerWithType:@"My_Mimeo_Machine"]

NSString *sValue = [prType stringForKey:@"3dDevice" inTable:@"PPD"];
/* sValue is "False". */

To retrieve the value for a main keyword/option keyword pair, pass the keywords formatted as
“mainKeywordoptionKeyword:

NSString *sValue = [prType stringForKey: @"PaperDensity/A4"
inTable:@"PPD"];
/* sValue is "0.3". */

stringForKey:inTable: can determine if a main keyword has options. If you pass a main keyword (only) as the
first argument to the method, and if that keyword has options in the PPD file, the method returns the empty string.
If it doesn’t have options, it returns the value of the first occurrence of the main keyword:

NSString *sValue = [prType stringForKey:@"PaperDensity" inTable:@"PPD"];
/* sValue is empty string*/

NSString *sValue = [prType stringForKey:@"InkName" inTable:@"PPD"];
/* sValue is "ProcessBlack" */

To retrieve the values for all occurrences of an un-optioned main keyword, ssértieistForKey:inTable:
method:

NSArray *sList = [prType stringListForKey:@"InkName" inTable:@"PPD"];
/* [slist objectAtindex:0] is "ProcessBlack",

[slist objectAtindex:1] is "CustomColor",

[slist objectAtindex:2] is "ProcessCyan”, and so on. */

In addition,stringListForKey:inTable: can be used to retrieve all the options for a main keyword (given that the
main keyword has options):

NSArray *sList = [prType stringListForKey:@"PaperDensity"
inTable:@"PPD"];
/* [slist objectAtindex:0] is "Letter",
[slist objectAtindex:1] is "Legal”,
[slist objectAtindex:2] is "A4", and so on. */

1-160 Chapter 1: Application Kit OpensStep Specification—10/19/94

Retrieving Values from the Option and Argument T ranslation Tables

A key to a translation table is like that to the PPD table: It's a main keyword or main/option keyword pair (again
excluding the asterisk). However, the values that are returned from the translation tables are the translation strings
for the option or argument (value) portions of the PPD file entry. For example:

NSString *sValue = [prType stringForKey:@"Resolution/300dpi"
inTable:@"PPDOptionTranslation"];
/* sValue is "300 dpi". */

NSArray *sList = [prType stringListForKey:@"InkName"
inTable:@"PPDArgumentTranslation"];
[* [slist objectAtindex:0] is "Process Black",
[slist objectAtIndex:1] is "Custom Color",
[slist objectAtindex:2] is "Process Cyan", and so on. */

As with the PPD table, requesting an NSArray of NSStrings for an un-optioned main keyword returns the
keyword’s options (if it has any).

Retrieving Values from the Order Dependency Table
As mentioned earlier, an order dependency entry takes this form:
*OrderDependencyeal section mainKeywordptionKeyword

These entries are stored in the PPDOrderDependency table. To retrieve a value from this table, always use
stringListForKey:inTable: . The value passed as the key is, again, a main keyword or main keyword/option
keyword pair; however, these values correspond tendiaKeywordandoptionKeywordoarts of an order

dependency entry’s value. As with the other tables, the main keyword'’s asterisk is excluded. The method returns
an NSArray of two NSStrings that correspond torda andsectionvalues for the entry. For example:

NSArray *sList = [prType stringListForKey:@"Resolution"
inTable:@"PPDOrderDependency"]
/* [slist objectAtindex:0] = "10", [slist objectAtindex:1] = "AnySetup" */

Retrieving Values from the UlConstraints Table

Retrieving a value from the PPDUIConstraints table is similar to retrieving a value from the PPDOrderDependency
table: always usstringListForKey:inTable: and the key corresponds to elements in the entry’s value. Given the
following form (as described earlier), the key correspondsaimKeywordloptionKeywordi

*UlConstraint:mainKeywordJoptionKeyword]l mainKeywordg optionKeyword?

The NSArray that's returned tsgringListForKey:inTable: contains thenainKeywordzandoptionKeyword?2
values (with the keywords stored as separate elements in the NSArray) fold@ogstraints entry that has the
givenmainKeywordloptionKeywordlvalue. For example:

NSArray *sList = [prType stringListForKey:@"Option3/None"
inTable:@"PPDUIConstraints"]
[* [slist objectAtindex:0] = "PageSize", [slist objectAtindex:1] = "Legal",
[slist objectAtindex:2] = "PageRegion”, [slist objectAtindex:3] = "Legal" */

OpenStep Specification—10/19/94 Classes: NSPrinter1-161

Note that the main keywords that are returned in the NSArray don’t have asterisks. Also, the NSArray that’s
returned always alternates main and option keywords. If a particular main keyword doesn’t have an option
associated with it, the string for the option will be empty (but the entry in the NSArray for thewititiexist).

Finding an NSPrinter
+ (NSPrinter *printerWithName: (NSString *name Returns the NSPrinter with the given name.

+ (NSPrinter *printerWithType: (NSString *type Returns an NSPrinter object for the given printer type.

+ (NSArray *)printerTypes Returns the recognized printer types.
Printer Attributes
— (NSString *host Returns the name of the printer’'s host computer.
— (NSString *hame Returns the printer’'s name.
— (NSString *hote Returns the note associated with the printer.
— (NSString *}ype Returns the name of the printer’s type.

Retrieving Specific Information
— (BOOL)acceptsBinary Returns YES if the printer accepts binary PostScript.

— (NSRectimageRectForPaper(NSString *paperName
Returns the printing rectangle for the named paper type.
Possible values fggaperNameare contained in the
printer's PPD file. Typical values are Letter and Legal.

— (NSSizepageSizeForPapetNSString *paperName
Returns the size of the page for the named paper type.

— (BOOL)isColor Returns whether the printer can print color.

— (BOOL)sFontAvailable:(NSString *fontName Returns whether the named font is available to the printer.

— (intlanguageLevel Returns the PostScript Language Level recognized by the
printer.

— (BOOL)isOutputStackinReverseOrder Returns whether the printer outputs pages in reverse page
order.

1-162 Chapter 1: Application Kit OpensStep Specification—10/19/94

Querying the NSPrinter Tables

— (BOOL)YooleanForKey:(NSString *key
inTable:(NSString *}able

— (NSDictionary *HleviceDescription

— (float¥loatForKey: (NSString *key
inTable:(NSString *}able

— (int)intForKey: (NSString *key
inTable:(NSString *}able

— (NSRectectForKey: (NSString *key
inTable:(NSString *}able

— (NSSizejizeForKey:(NSString *key
inTable:(NSString *}able

— (NSString *ptringForKey: (NSString *key
inTable:(NSString *}Yable

— (NSArray *stringListForKey: (NSString *key
inTable:(NSString *}able

Returns a boolean value associated Wwéin table

Returns a dictionary of keys and values describing the
device. See NSGraphics.h for possible keys.

Returns a floating-point value associated \kéiiin table

Returns an integer value associated \kéhin table

Returns rectangle associated widlyin table

Returns the size associated vk#yin table

Returns a string associated wheyin table

Returns an array of strings associated \éfin table

— (NSPrinterTableStatustptusForTable:(NSString *Yable

— (BOOL)isKey:(NSString *key
inTable:(NSString *}Yable

OpenStep Specification—10/19/94

Returns the status (NSPrinterTableOK,
NSPrinterTableNotFound, NSPrinterTableError) of the
given table.

Returns whetheteyis a key intable

Classes: NSPrinter1-163

NSPrintinfo

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrintinfo.h

Class Description

An NSPrintinfo object stores information that’s used during printing. A shared NSPrintinfo object is automatically
created for an application and is used by default for all printing jobs for that application. You can create any number
of additional NSPrintinfo objects; however, only one can be “active” at a time, as set through the
setSharedPrintInfo: class method. The shared NSPrintinfo object is returned throughahedPrintinfo class

method.

An NSPrintinfo object is used by the NSPrintOperations class to control printing. If you create special instances of
NSPrintInfo objects for a specific printing task, you must ensure that either the application’s shared NSPrintInfo
object is current, or you must instantiate an NSPrintOperations object using one of its methods that explicitly
designate an NSPrintinfo object.

Although you can set an NSPrintInfo’s attributes through the methods it provides, this is usually the task of other
objects, notably the NSPageLayout and NSPrintPanel objects. The NSView or NSWindow that’s being printed may
also supercede some NSPrintinfo settings. In particular, a NSView or NSWindow can supply the range of pages in
the document and can provide its own pagination mechanism throuighativePagesFirst:last:and

rect:forPage: methods (see the documentation of these methods in the NSView class for details).

If the printed NSView or NSWindow doesn’t supply a pagination, the NSPrintinfo’s vertical and horizontal
pagination constants are used to trigger built-in pagination mechanisms:

Pagination Constant Meaning

NSAutoPagination The image is diced into equal-sized rectangles and placed in one column of
pages.

NSFitPagination The image is scaled to produce one column or one row of pages.

NSClipPagination The image is clipped to produce one column or row of pages.

Vertical and horizontal pagination needn't be the same. However, if either dimension is scaled (NSFitPagination),
the other dimension is scaled by the same amount to avoid stretching the image. If both dimensions are scaled, the
scaling factor that produces the smallest image is used. Note that NSPrintInfo’s scaling factor is independent of the
scaling that’s imposed by pagination and is applied after the document has been paginated.

NSPrintinfo uses points as the unit of measurement for paper size and margin width in the methods below. See the
NSFont specification for a discussion of points.

1-164 Chapter 1: Application Kit OpensStep Specification—10/19/94

Creating and Initializing an NSPrintinfo Instance

— (id)initwithDictionary: (NSDictionary *aDict

Managing the Shared NSPrintinfo Object
+ (void)setSharedPrintinfo:(NSPrintinfo *)printinfo
+ (NSPrintInfo *sharedPrintinfo

Managing the Printing Rectangle
+ (NSSizeyizeForPaperName{NSString *hame

— (floatpottomMargin
— (float)eftMargin
— (NSPrintingOrientatiomyientation

— (NSString *paperName

— (NSSizepaperSize

— (floatyightMargin

— (void)setBottomMargin: (float)value
— (void)setLeftMargin: (floatvalue

Initializes a newly allocated NSPrintinfo object by
assigning it the parameters specifiedDict. This is
the designated initializer for the class.

Sets the shared NSPrintinfo objecptintinfo.

Returns the shared NSPrintinfo object.

Returns the size for the specified type of papame
identifies the type of paper, such as “Letter” or “Legal”.
Paper names are implementation specific.

Returns the height of the bottom margin.
Returns the width of the left margin.
Returns whether the orientation is Portrait or Landscape.

Returns the paper type, such as “Letter” or “Legal”. Paper
names are implementation specific.

Returns the size of the paper.
Returns the width of the right margin.
Sets the bottom margin t@lue

Sets the left margin tealue

— (void)setOrientation:(NSPrintingOrientatiompode Sets the orientation as Portrait or Landscape.

— (void)setPaperName{NSString *name

— (voidsetPaperSize(NSSizeyize
— (void)setRightMargin: (floativalue
— (void)setTopMargin: (float)value
— (floattopMargin

OpenStep Specification—10/19/94

Sets the paper typeameidentifies the type of paper, such
as “Letter” or “Legal”. Paper names are implementation
specific.

Sets the width and height of the paper.
Sets the right margin taalue
Sets the top margin tmlue

Returns the height of the top margin.

Classes: NSPrintinfo1-165

Pagination

— (NSPrintingPaginationModedrizontalPagination Returns the horizontal pagination mode.

— (void)setHorizontalPagination(NSPrintingPaginationModejode

Sets the horizontal pagination mode.

— (void)setVerticalPagination:(NSPrintingPaginationMode)ode

— (NSPrintingPaginationModegrticalPagination

Positioning the Image on the Page
— (BOOL)isHorizontallyCentered
— (BOOL)isVerticallyCentered
— (void)setHorizontallyCentered:(BOOL)flag
— (void)setVerticallyCentered:(BOOL)flag

Specifying the Printer
+ (NSPrinter *plefaultPrinter
+ (void)setDefaultPrinter: (NSPrinter *printer
— (NSPrinter *printer

— (void)setPrinter:(NSPrinter *aPrinter

Controlling Printing
— (NSString *)obDisposition

— (void)setJobDisposition(NSString *disposition

— (voidsetUpPrintOperationDefaultValues

Accessing the NSPrintinfo Objects Dictionary

— (NSMutableDictionary *jictionary

1-166 Chapter 1: Application Kit

Sets the vertical pagination mode.

Returns the vertical pagination mode.

Returns whether the image is centered horizontally.
Returns whether the image is centered vertically.
Sets whether the image is centered horizontally.

Sets whether the image is centered vertically.

Returns the user’s default printer.
Sets the user’s default printer.
Returns the NSPrinter that's used for printing.

Sets the printer that's used in subsequent printing jobs.

Returns the action specified for the job: printing, faxing,
previewing, etc. SegetJobDisposition:

Sets the action specified for the jdispositioncan be one
of NSPrintSpoolJob, NSPrintFaxJob,
NSPrintPreviewJob, NSPrintSaveJob,
NSPrintCancelJob.

Allows the receiver to set any attribute that hasn’t been
previously set.

Returns the NSPrintInfo object’s dictionary.

OpensStep Specification—10/19/94

NSPrintOperation

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSPrintOperation.h

Class Description

NSPrintOperation controls operations that generate Encapsulated PostScript (EPS) code or PostScript print jobs.
Generally, EPS code is used to transfer images between applications, which happens when the user copies and
pastes graphics, uses a Service, or uses ObjectLinks. PostScript print jobs are generated when the user prints and
faxes documents. An NSPrintOperation does not generate PostScript code itself; it just controls the overall process,
relying on an NSView object to generate the actual code.

NSPrintOperation relies mainly on two other objects: an NSPrintInfo object, which specifies how the code should
be generated, and an NSView object, which performs the actual code generation. You specify these two objects in
the method you use to create the NSPrintOperation. If no NSPrintInfo is specified, NSPrintOperation uses the
shared NSPrintinfo, which contains default values. The shared NSPrintinfo works well for applications that are not
document-based. Document-based applications should create an NSPrintinfo for each document that might be
printed or copied and use that object instead.

You should create an NSPrintOperation in any method that is invoked when a user executes a Print command or a
Copy command. That method also must send NSPrintOperatiom®@eration message to start the operation. A
print: method for a document-based application might look like this:

- (void)print:sender {
[[NSPrintOperation printOperationWithView:[self myView] printinfo:[document
docPrintinfo]] runOperation];

}

This method creates an NSPrintOperation for a print job that uses the document’s NSPrintinfo. Because this is a
print job, a Print panel (NSPrintPanel object) is displayed to allow the user to select printing options. The
NSPrintOperation copies the NSPrintInfo, updates this copy with information from the Print panel, and uses the
specified NSView to perform the operation.

The information stored in an NSPrintinfo that’s retained between operations is information that'’s likely to remain
constant for a document, such as its page size. All information that’s likely to change between operations is set to
a default value in the NSPrintinfo before the operation begins. In this way, even though NSPrintOperation updates
the NSPrintinfo with information from the Print panel for print jobs, that information is reset back to the default
values for each print job. Because NSPrintOperation keeps a copy of the NSPrintInfo it uses, you could duplicate
a specific print job by storing that copy and reusing it.

OpenStep Specification—10/19/94 Classes: NSPrintOperatiori-167

Creating and Initializing an NSPrintOperation Object

+ (NSPrintOperation BPSOperationWithView: (NSView *)aView
insideRect(NSRectject Returns a new NSPrintOperation that controls the
toData:(NSMutableData *jata copying of EPS graphics from the area specifiextbly
in aView using the parameters in the default
NSPrintinfo. The code is written ttata Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation BPSOperationWithView: (NSView *)aView

insideRect(NSRectject Returns a new NSPrintOperation that controls the
toData:(NSMutableData *jata copying of EPS graphics from the area specifiegebt
printinfo: (NSPrintInfo *)aPrintinfo in aView using the parametersarintinfo. The code

is written todata Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation BPSOperationWithView: (NSView *)aView

insideRect{NSRectject Returns a new NSPrintOperation that controls the
toPath:(NSString *path copying of EPS graphics from the area specifietebly
printinfo: (NSPrintinfo *)aPrintinfo in aView using the parametersafrintinfo. The code

is written topath Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation PrintOperationWithView: (NSView *)aView
Returns a new NSPrintOperation thanhtrols the printing
of aView using the parameters in the shared
NSPrintInfo object. Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

+ (NSPrintOperation PrintOperationWithView: (NSView *)aView
printinfo: (NSPrintInfo *)aPrintinfo Returns a new NSPrintOperation thantrols the printing
of aView using the parametersafrintinfo. Raises
NSPrintOperationExistsException if there is already a
print operation in progress.

— (id)initEPSOperationWithView: (NSView *)aView Initializes a newly allocated NSPrintOperation to

insideRect(NSRectject control the copying of EPS graphics from the area
toData:(NSMutableData *Jata specified byrectin aView using the parameters in
printinfo: (NSPrintinfo *)aPrintinfo aPrintinfa The code is written tdata
— (id)initwithView: (NSView *)aView Initializes a newly allocated NSPrintOperation to
printinfo: (NSPrintinfo *)aPrintinfo control the printing o&View using the parameters in
aPrintinfo.

1-168 Chapter 1: Application Kit OpensStep Specification—10/19/94

Setting the Print Operation

+ (NSPrintOperation QurrentOperation

Returns the NSPrintOperation that represents the current
operationor nil if there is no such operation.

+ (void)setCurrentOperation: (NSPrintOperation ®peration

Determining the Type of Operation
— (BOOL)sEPSOperation

Controlling the User Interface

— (NSPrintPanel PrintPanel

— (BOOL)showPanels

— (void)setPrintPanel(NSPrintPanel }anel

— (voidsetShowPanel¢BOOL)flag

Managing the DPS Context
— (NSDPSContext treateContext

— (NSDPSContext tontext

— (void)destroyContext

Page Information
— (int)currentPage

— (NSPrintingPageOrdeyageOrder

— (void)setPageOrder(NSPrintingPageOrdesjder

OpenStep Specification—10/19/94

Sets the NSPrintOperation that represents the current
operation.

Returns YES if the receiver controls an EPS operation and
NO if the receiver controls a printing operation.

Returns the NSPrintPanel object that’s used when the
operation is run.

Returns whether the Print panel will appear when the
operation is run.

Sets the NSPrintPanel object that's used when the
operation is run.

Sets whether the Print panel appears when the operation is
run.

Used by the NSPrintOperation object to create the DPS
context for output generation, using the current
NSPrintinfo settings.

Returns the DPS context used for the receiver’s operation.

Used by the NSPrintOperation object to destroy the DPS
context at the end of the operation.

Returns the page number of the page being printed.
Returns the order in which pages will be printed.

Sets the order in which pages will be printed.

Classes: NSPrintOperatiori-169

Running a Print Operation

— (void)cleanUpOperation

— (BOOL)XeliverResult

— (BOOLYunOperation

Getting the NSPrintinfo Object
— (NSPrintinfo *printinfo
— (void)setPrintinfo: (NSPrintinfo *)aPrintinfo

Getting the NSView Object
— (NSView *view

1-170 Chapter 1: Application Kit

Invoked at end of an operation’s run to set the current
operation tanil.

Delivers the results generatedfoymOperation to the
intended destination: the print spooler, preview
application, etc. Returns YES upon successful delivery
and NO otherwise.

Causes the operation (copying EPS graphics or printing) to
take place. Returns YES upon successful completion
and NO otherwise.

Returns the receiver’'s NSPrintinfo object.

Sets the receiver’'s NSPrintinfo objecta®rintinfo.

Returns the NSView object that performs the operation
controlled by the receiving object.

OpensStep Specification—10/19/94

NSPrintPanel

Inherits From:

Conforms To:

Declared In:

Class Description

NSPanel : NSWindow : NSResponder : NSObiject

NSCoding (NSResponder)
NSObject (NSObject)

AppKit/NSPrintPanel.h

NSPrintPanel creates a Print panel. The Print panel queries the user for information about a print job, such as which
pages to print and how many copies.

When aprint: message is sent to an NSView or NSWindow, an NSPrintOperation object is created to control the
print operation, which includes deciding whether or not to use an NSPrintPanel. The NSPrintPanel will be used
unless thesetShowPanels:NOnessage is sent to the NSPrintOperation. If you're subclassing NSPrintPanel, send
thesetPrintPanelmessage to the NSPrintOperation object to ensure that an instance of your subclass is the unique
NSPrintPanel for that operation.

Short of subclassing NSPrintPanel, you can augment its display by adding a custom NSView through the
setAccessoryViewmethod. The panel is automatically resized to accommodate the NSView that you add. Note,
however, that you don't have to create controls for special printer features. If a printer includes features in the
“OpenUl” field of its PostScript Printer Description (PPD) table, these features will be displayed in a separate panel
that’s brought up when the user clicks the Print panel’s Options button. For more information on a printer's PPD
table, see the NSPrinter class description.

Typically, you access an NSPrintPanel by invokingatietPanel method. When the class receivgwiatPanel

message, it tries to reuse an existing panel rather than create a new one. When a panel is reused, its attributes are
reset to the default values so that the effect is the same as receiving a new panel. Because a Print panel may be
reused, you shouldn’t modify the instance returnegrtPanel, except through the methods listed below. For
example, you can set the accessory view, but not the arrangement of the buttons within the panel. If you must
modify the Print panel substantially, create and manage your own instance usithgcthendinit... methods

rather than therintPanel method.

An application stores printing information in an NSPrintinfo object. NSPrintParmlateFromPrintinfo reads

the NSPrintinfo object’s information into the Print parfielalWritePrintinfo updates the NSPrintinfo object if

the user changes the information on the Print panel. When the NSPrintOperation object is created, an NSPrintinfo
object is also selected for the operation. The NSPrintOperation creates a copy of the NSPrintinfo.
finalWritePrintinfo actually writes to that copy.

OpenStep Specification—10/19/94 Classes: NSPrintPanell-171

Creating an NSPrintPanel
+ (NSPrintPanel rintPanel

Customizing the Panel
— (void)setAccessoryViewNSView *)aView

— (NSView *)accessoryView

Running the Panel

— (intjrunModal

— (void)pickedButton:(id)sender

Updating the Panel’s Display
— (void)pickedAllPages(id)sender
— (void)pickedLayoutList: (id)sender

Communicating with the NSPrintinfo Object
— (voidupdateFromPrintinfo

— (void)inalWritePrintinfo

1-172 Chapter 1: Application Kit

Returns a default NSPrintPanel object.

Adds an NSView to the panel.

Returns the accessory NSView.

Displays the Print panel and begins its event loop. If it is
necessary to resize the panel in order to accommodate
the list of printers, this method posts the notification
NSWindowDidResizeNoatification with the receiving
object to the default notification center.

Stops the event loop.

Updates the panel when the user chooses all pages.

Updates the panel when the user chooses a new layout.

Reads NSPrintPanel’s values from the NSPrintinfo object.

Writes NSPrintPanel’s values to the NSPrintinfo object.

OpensStep Specification—10/19/94

NSResponder

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Declared In: AppKit/NSResponder.h

Class Description

NSResponder is an abstract class that forms the basis of command and event processing in the Application Kit.
Most Application Kit classes inherit from NSResponder. When an NSResponder receives an event or action
message that it can’t respond to—that it doesn’t have a method for—the message is settegpondeor

an NSView, the next responder is usually its superview; the content view's next responder is the NSWindow. Each
NSWindow, therefore, has its owsponder chainMessages are passed up the chain until they reach an object
that can respond.

Action messages and keyboard event messages are sent firgirsi tasponderthe object that displays the
current selection and is expected to handle most user actions within a window. Each NSWindow has its own first
responder. Messages the first responder can’t handle work their way up the responder chain.

This class defines the methods that pass event and action messages along the responder chain.

Managing the Next Responder
— (NSResponder HextResponder Returns the receiver’s next responder.

— (voidsetNextResponderNSResponder §Responder
MakesaRespondethe receiver's next responder.

Determining the First Responder

— (BOOL)acceptsFirstResponder Subclasses override to accept or reject first responder
status. NSResponder’s implementation simply returns
NO.

— (BOOL)YecomeFirstResponder Notifies the receiver that it's the first responder.

— (BOOLYesignFirstResponder Notifies the receiver that it's not the first responder.

OpenStep Specification—10/19/94 Classes: NSResponddr173

Aiding Event Processing

— (BOOL)performKeyEquivalent: (NSEvent *theEvent

— (BOOL)YryToPerform: (SEL)anAction
with: (id)anObject

Forwarding Event Messages

— (void)flagsChanged{NSEvent *fheEvent

— (voidhelpRequested(NSEvent *theEvent

— (voidkeyDown:(NSEvent *}heEvent

— (voidkeyUp:(NSEvent *theEvent

— (voidymouseDown(NSEvent *}heEvent

— (voidymouseDragged{NSEvent *}heEvent

— (void)mouseEntered(NSEvent *theEvent

— (void)ymouseExited(NSEvent *}heEvent

1-174 Chapter 1: Application Kit

Subclasses override to respond to keyboard input.
NSResponder’s implementation simply returns NO to
indicatetheEvenisn’t handled.

Aids in dispatching action messages. Returns YES if an
responder in the responder chain can perform the
anActionmethod, which takes the single argument
anObject

Subclasses override to handle flags-changed events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Causes the Help panel to display the help attached to the
receiver. If there’s no attached help, passes the message
to the receiver’s next responder.

Subclasses override to handle key-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder. If the first responder
changes, this method posts the notification
NSTextDidEndEditingNotification with the current
object and, in the notification’s dictionary, the key
NSTextMovement to the default notification center.

Subclasses override to handle key-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-dragged events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-entered events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Subclasses override to handle mouse-exited events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

OpensStep Specification—10/19/94

— (voidymouseMoved(NSEvent *fheEvent Subclasses override to handle mouse-moved events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (void)mouseUp(NSEvent *theEvent Subclasses override to handle mouse-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (void)noResponderFor(SEL)eventSelector Responds to an event message that has reached the end of
the responder chain without finding an object that can
respond. When the event is a key down, generates a
beep.

— (voidxightMouseDown:(NSEvent *theEvent Subclasses override to handle right mouse-down events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (voidyightMouseDragged:(NSEvent *theEvent Subclasses override to handle right mouse-dragged events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

— (void¥ightMouseUp: (NSEvent *}heEvent Subclasses override to handle right mouse-up events.
NSResponder’s implementation passes the message to
the receiver’s next responder.

Services Menu Support

— (id)validRequestorForSendTypef{NSString *}ypeSent
returnType: (NSString *YypeReturned Subclasses override to determine which Services menu
items are enabled at a given time. Retursilfenables
services that can receitsgeSenpasteboard types and
can returnypeReturnegasteboard types. Returnimidy
disables them. NSResponder’s implementation passes
the message to the receiver’s next responder.

OpenStep Specification—10/19/94 Classes: NSResponddr175

NSSavePanel

Inherits From:

Conforms To:

Declared In:

Class Description

NSPanel : NSWindow : NSResponder : NSObiject

NSCoding (NSResponder)
NSObject (NSObject)

AppKit/NSSavePanel.h

NSSavePanel creates a Save panel. The Save panel provides a simple way for a user to specify a file to use when
saving a document or other data. It can restrict the user to files of a certain type, as specified by a file name

extension.

When the user decides on a file name, the megsagisValidFilename: is sent to the NSSavePanel’s delegate
(if it responds to that message). The delegate can then determine whether that file name can be used; it returns YES
if the file name is valid, or NO if the Save panel should stay up and wait for the user to type in a different file name.

Typically, you access an NSSavePanel by invoking#vePaneimethod. When the class receivesasePanel

message, it tries to reuse an existing panel rather than create a new one. When a panel is reused, its attributes are
reset to the default values so that the effect is the same as receiving a new panel. Because a Save panel may be
reused, you shouldn't modify the instance returnesblrgPaneglexcept through the methods listed below. For

example, you can set the panel’s title and required file type, but not the arrangement of the buttons within the panel.
If you must modify the Save panel substantially, create and manage your own instance adiiog traandinit...

methods rather than tlsavePanemethod.

Creating an NSSavePanel

+(NSSavePanel spvePanel Returns an NSSavePanel object, creating it if necessary.

Customizing the NSSavePanel

— (void)setAccessoryView(NSView *)aView Adds an application-customized view to the save panel.
— (NSView *)accessoryView Returns the application-customized view object.
— (void)setTitle:(NSString *Yitle Sets the title of the NSSavePanetitie.

— (NSString *jitle

Returns the title of the NSSavePanel.

— (void)setPrompt:(NSString *prompt Sets the title of the form field for the pathpitompt

— (NSString *prompt Returns the title of the form field for the path.

1-176 Chapter 1: Application Kit OpensStep Specification—10/19/94

Setting Directory and File Type
— (NSString *yequiredFileType

— (void)setDirectory:(NSString *path
— (voidsetRequiredFileType(NSString *}ype

Gets the required file type (if any).
Sets the current directory of the NSSavePanel.

Sets the required file type (if any). An empty string
indicates that the user can save to any ASCII file.

— (void)setTreatsFilePackagesAsDirectorie§BOOL)flag

— (BOOL)treatsFilePackagesAsDirectories

Running the NSSavePanel

— (int)runModalForDirectory: (NSString *path

file:(NSString *filename

— (inthrunModal

Reading Save Information
— (NSString *firectory
— (NSString *filename

Target and Action Methods
— (void)ok: (id)sender

— (void)cancel{id)sender

Responding to User Input

— (void)selectText(id)sender

Setting the Delegate
— (voidsetDelegate(id)anObject

OpenStep Specification—10/19/94

Sets whether the NSSavePanel object treats file packages as
directories by showing their contents in the browser.

Returns YES if the NSSavePanel treats file packages as
directories, thereby allowing users to browse the
contents of file packages.

Displays the NSSavePanel and begins its event loop,
showingpathin the browser and selectifigname

Displays the NSSavePanel and begins its event loop.

Returns the directory that the chosen file resides in.

Returns the absolute path nhame of the file to be saved.

Method invoked by the OK button.
Method invoked by the Cancel button.

Invoked when users press Tab, Shift-Tab, or an arrow key.

MakesanObjectthe NSSavePanel’s delegate.

Classes: NSSavePandl-177

Methods Implemented by the Delegate

— (NSComparisonResufthnel:(id)sender Returns NSOrderedDescendindilénamelprecedes
compareFilename(NSString *filenamel filename2 NSOrderedAscending in the opposite case,
with: (NSString *filename2 NSOrderedSame if the two are equivalent.
caseSensitivdBOOL)caseSensitive

— (BOOL)panel:(id)sender Returns YES ifilenameshould be displayed in the
shouldShowFilename(NSString *¥ilename browser.

— (BOOL)anel:(id)sender Returns YES ifilenameis acceptable to the delegate.

isValidFilename:(NSString*¥ilename

1-178 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSScreen

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSScreen.h

Class Description

An NSScreen object describes the attributes of a computer’s monitor, or screen. An application may use an
NSScreen object to retrieve information about a screen and use this information to decide what to display upon that
screen. For example, an application may usel¢epestScreemethod to find out which of the available screens

can best represent color and then may choose to display all of its windows on that screen.

The two main attributes of a screen are its depth and its dimensiordefdthenethod describes the screen depth
(such as two-bit, eight-bit, or twelve-bit) and tells you if the screen can display coldraifteemethod gives the
screen’s dimensions and location as an NSRect.

The device description dictionary contains more complete information about the screen. Use NSScreen’s
deviceDescriptionmethod to access the dictionary, and use these keys to retrieve information about a screen:

Dictionary Key Returns

NSDeviceResolution An NSValue describing the screen’s resolution in dots per inch (dpi).
NSDeviceColorSpaceName The screen’s color space name. See NSGraphics.h for a list of possible values.
NSDeviceBitsPerSample The bit depth of screen images (2-bit, 8-bit, etc.).

NSDevicelsScreen YES, indicating the device is a screen.

NSDeviceSize An NSValue describing the screen’s size in points.

The device description dictionary contains information about not only screens, but all other system devices such as
printers and windows. There are other keys into the dictionary that you would use to obtain information about these
other devices. For a complete list of device dictionary keys, see NSGraphics.h.

Creating NSScreen Instances

+ (NSScreen *hainScreen Returns an NSScreen object representing the main screen.
The main screen is the screen with the key window.

+ (NSScreen eepestScreen Returns an NSScreen object representing the screen that
can best represent color. This method always returns an
object, even if there is only one screen and it is not a
color screen.

OpenStep Specification—10/19/94 Classes: NSScreef-179

+ (NSArray *)screens

Reading Screen Information

— (NSWindowDepthjepth

— (NSRectlrame

— (NSDictionary *HeviceDescription

1-180 Chapter 1: Application Kit

Returns an array of NSScreen objects representing all of
the screens available on the system. Raises
NSWindowServerCommunicationException if the
screens information can’t be obtained from the window
system.

Returns the screen’s depth, including whether the screen
can display color.

Returns the dimensions and location of the screen in an
NSRect.

Returns the device dictionary as described in the class
description.

OpensStep Specification—10/19/94

NSScroller

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSScroller.h

Class Description

The NSScroller class defines a control that's used by an NSScrollView object to position a document that's too large
to be displayed in its entirety within an NSView. An NSScroller is typically represented on the screen by a bar, a
knob, and two scroll buttons, although it may contain only some of these. The knob indicates both the position
within the document and the amount displayed relative to the size of the document. The bar is the rectangular region
that the knob slides within. The scroll buttons allow the user to scroll in small increments by clicking, or in large
increments by Alternate-clicking. In discussions of the NSScroller class, a small increment is referred to as a “line
increment” (even if the NSScroller is oriented horizontally), and a large increment is referred to as a “page
increment,” although a page increment actually advances the document by one windowful. When you create an
NSScroller, you can specify either a vertical or a horizontal orientation.

As an NSControl, an NSScroller handles mouse events and sends action messages to its target (usually its parent
NSScrollView) to implement user-controlled scrolling. The NSScroller must also respond to messages from an
NSScrollView to represent changes in document positioning.

NSScroller is a public class primarily for programmers who decide not to use an NSScrollView but want to present

a consistent user interface. Its use is not encouraged except in cases where the porting of an existing application is
made more straightforward. In these situations, you initialize a newly created NSScroller by calling

initWithFrame: . Then, you useetTarget: (NSControl) to set the object that will receive messages from the
NSScroller, and you ussetAction: (NSControl) to specify the message that will be sent to the target by the
NSScroller. When your target receives a message from the NSScroller, it will probably need to query the
NSScroller using thaitPart andfloatValue (NSControl) methods to determine what action to take.

The NSScroller class has several constants referring to the parts of an NSScroller. A scroll button with an up arrow
(or left arrow, if the NSScroller is oriented horizontally) is known as a “decrement line” button if it receives a
normal click, and as a “decrement page” button if it receives an Alternate-click. Similarly, a scroll button with a
down or right arrow functions as both an “increment line” button and an “increment page” button. The constants
defining the parts of an NSScroller are as follows:

OpenStep Specification—10/19/94 Classes: NSScrollen-181

Constant Refers To

NSScrollerNoPart No part of the NSScroller

NSScrollerkKnob The knob

NSScrollerDecrementPage The button that decrements a windowful (up or left arrow)
NSScrollerincrementPage The button that increments a windowful (down or right arrow)
NSScrollerDecrementLine The button that decrements a windowful (up or left arrow)
NSScrollerincrementLine The button that increments a windowful (down or right arrow)
NSScrollerkKnobSlot The bar

The following constants are used in getArrowsPosition: method to set the position of the scroll buttons within
the scroller:

Constant Meaning

NSScrollerArrowsMaxEnd Scroll buttons are placed at the bottom or right end of the scroller.
NSScrollerArrowsMinEnd Scroll buttons are placed at the top or left part of the scroller.
NSScrollerArrowsNone The scroller doesn’t have scroll buttons.

An NSScroller can be made too small for all its parts to be displayedisbiePartsmethod returns one of the
following constants to indicate whether such a condition is present:

Constant Meaning

NSNoScrollerParts Scroller has no usable parts, only the bar.
NSOnlyScrollerArrows Scroller has only scroll buttons.
NSAlIScrollerParts Scroller has all parts.

The following constants are used as values for the first argumentishthrrow:highlight: method, to indicate
which scroll button is to be drawn:

Constant Meaning

NSScrollerincrementArrow The scroll button that scrolls forward.
NSScrollerDecrementArrow The scroll button that scrolls backward.

Laying out the NSScroller

+ (float)scrollerwidth Returns the width of the scoller, a constant value.
— (NSScrollArrowPositiorgrrowsPosition Returns the position of scroll arrows in the NSScroller.
— (void)checkSpaceForParts Checks for room for knob and scroll buttons.

— (NSRectectForPart: (NSScrollerParpartCode Gets the rectangle that enclopastCode

— (void)setArrowsPosition:(NSScrollArrowPositionyhere
Sets position of scroll arrows in the NSScroller.

— (NSUsableScrollerPartsjableParts Indicates which parts of the scroller can be displayed, given
the NSScroller’s current size.

1-182 Chapter 1: Application Kit OpenStep Specification—10/19/94

Setting the NSScroller’s Values

— (floatknobProportion Returns the ratio of the knob’s length to the NSScroller’s
length.
— (void)setFloatValue{float)aFloat Sets the NSScroller’s value, repositioning the
knobProportion: (float)ratio knob according taFloat and resizing it according to

ratio. Both argumentare clipped to the range from 0.0
to 1.0, inclusive.

Displaying
— (void)drawArrow: (NSScrollerArrowyvhichButton
highlight: (BOOL)flag Draws highlighted and unhighlighted arrows.
— (void)rawKnob Draws the knob.
— (voiddrawParts Caches bitmaps for knob and scroll arrows.
— (voidhighlight: (BOOL)flag Highlights scroll button that's under mouse.

Handling Events

— (NSScrollerPartjitPart Returns the part of the NSScroller object that received
mouse-down.

— (NSScrollerPartgstPart:(NSPointjhePoint Returns the part of the NSScroller that’s urttieiPoint

— (voidtrackKnob: (NSEvent *theEvent Invoked in response to mouse-down events on the knob.

— (voidtrackScrollButtons: (NSEvent *theEvent Invoked in response to mouse-down events on buttons.

OpenStep Specification—10/19/94 Classes: NSScrollen-183

NSScrollView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScrollView.h

Class Description

An NSScrollView object lets the user interact with a document that’s too large to be shown in its entirety within an
NSView and must therefore be scrolled. The responsibility of an NSScrollView is to coordinate scrolling behavior
between NSScroller objects and a NSClipView object. Thus, the user may drag the knob of an NSScroller and the
NSScrollView will send a message to its NSClipView to ensure that the viewed portion of the document reflects
the position of the knob. Similarly, the application can change the viewed position within a document and the
NSScrollView will send a message to the NSScrollers advising them of this change.

The NSScrollView has at least one subview (an NSClipView object), which is calledrttest viewThe content

view in turn has a subview called tdecument vieywhich is the view to be scrolled. When an NSScrollView is
created, it has neither a vertical nor a horizontal scroller. If NSScrollers are required, the application must send
setHasHorizontalScroller:YES andsetHasVerticalScroller:YES messages to the NSScrollView; the content

view is resized to fill the area of the NSScrollView not occupied by the NSScrollers.

When the application modifies the scroll position within the document, it should seffettScrolledClipView:
message to the NSScrollView, which will then query the content view and set the NSScroller(s) accordingly. The
reflectScrolledClipView: message may also cause the NSScrollView to enable or disable the NSScrollers as
required.

Determining Component Sizes
— (NSSizegontentSize Gets the content view’s size.

— (NSRectlocumentVisibleRect Gets the visible portion of the document view.

1-184 Chapter 1: Application Kit OpenStep Specification—10/19/94

Laying Out the NSScrollView

+ (NSSizegontentSizeForFrameSizgNSSizeyize Gets the content view size for the given NSScrollView
hasHorizontalScroller:(BOOL)horizFlag frame size.
hasVerticalScroller:(BOOL)vertFlag
borderType:(NSBorderTypeaType

+ (NSSizeframeSizeForContentSize{NSSize¥ize Gets the NSScrollView frame size for the given content
hasHorizontalScroller:(BOOL)horizFlag view size.
hasVerticalScroller:(BOOL)vertFlag
borderType:(NSBorderTypeaType

— (void)setHasHoarizontalScroller(BOOL)flag Instructs the NSScrollView whether to create and use a
horizontal scroller.

— (BOOLasHarizontalScroller Returns YES if the NSScrollView object has a horizontal
scroller.

— (void)setHasVerticalScroller(BOOL)flag Instructs the NSScrollView whether to create and use a
vertical scroller.

— (BOOL)hasVerticalScroller Returns YES if the NSScrollView object has a vertical
scroller.

— (voidYile Retiles the scrollers and content view.

— (voidtoggleRuler:(id)sender Makes the ruler visible or invisible, whichever is the

opposite of its current state.

— (BOOL)sRulerVisible Returns whether the ruler is visible in the NSScrollView.

Managing Component Views
— (voidsetDocumentView(NSView *)aView MakesaViewthe NSScrollView's document view.
— (id)documentView Returns the current document view.

— (void)setHorizontalScroller:(NSScroller *anObject
Sets the horizontal NSScroller object.

— (NSScroller *horizontalScroller Returns the horizontal NSScroller object.
— (void)setVerticalScroller:(NSScroller *anObject Sets the vertical NSScroller object.
— (NSScroller *yerticalScroller Returns the vertical NSScroller object.

— (voidyeflectScrolledClipView:(NSClipView *)cView
Moves the scrollers to reflect change in the coordinates of
the clip view.

OpenStep Specification—10/19/94 Classes: NSScrollViewt-185

Modifying Graphic Attributes
— (void)setBorderType:(NSBorderTypeaType Sets the border type of the NSScrollView.
— (NSBorderTypd)orderType Returns the border type.
— (void)setBackgroundColor(NSColor *)color Sets the NSScrollView’s background color.

— (NSColor *packgroundColor Returns the NSScrollView's background color.

Setting Scrolling Behavior

— (float)ineScroll Returns the amount scrolled when scrolling a line. (The
return value is expressed in units of the NSScrollView’s
coordinate system.)

— (floatpageScroll Returns the amount scrolled when scrolling a page. (The
return value is expressed in units of the NSScrollView’s
coordinate system.)

— (void)setScrollsDynamically(BOOL)flag Sets how the document view is displayed during scrolling.
— (BOOL)scrollsDynamically Returns whether the NSScrollView scrolls dynamically.

— (void)setLineScroll:(floatvalue Sets the amount to scroll when scrolling a line.

— (voidsetPageScrolifloat)value Sets the amount of overlap for a page scroll.

Managing the Cursor

— (void)setDocumentCursor{NSCursor *anObject Sets the cursor for the document view.

1-186 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSSelection

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: AppKit/NSSelection.h

Class Description

The NSSelection class defines an object that describes a selection within a document. An NSSelection, or simply,
selection, is an immutable description; it may be held by the system or other documents, and it cannot change over
time. Selections are typically used by NSDataLink objects to represent the source and destination of a link.

Because a selection description can't be changed once it's been exported, it's a good idea to construct general
descriptions that can survive changes to a document and don’t require selection-specific information to be stored
in the document. This description may be simple or complex, depending upon the application. For example, a
painting application might describe a selection in an image as a simple rectangle. This description doesn’t require
that any information be stored in the image’s file, and the description can be expected to remain valid through the
life of the image. An object-based drawing application might describe a selection as a list of object identifiers
(thoughnotids), where an object identifier is unique throughout the life of the document. Based on this list, a
selection could be meaningfully reconstructed, even if new objects are added to the document or selected objects
are deleted. Such a scheme doesn't require that any selection-specific information be stored in the document’s file,
with the benefit that links can be made to read-only documents.

Maintaining a character-range selection in a text document is more problematic. A possible solution is to insert
selection-begin and selection-end markers that define a specific selection into the text stream. A selection
description would then refer to a specific selection marker. This solution requires that selection state information
be stored and maintained within the document. Furthermore, this information generally shouldn't be purged from
the document, because the document can’'t know how many references to the selection exist. (References to the
selection could be stored with documents on removable media, like floppy disks.) This selection-state information
should be maintained as long as it refers to any meaningful data. For this reason, it's desirable to describe selection
in a manner that doesn’t require that selection-state information be maintained in the document whenever possible.

Three well-known selection descriptions can apply to any document: the empty selection, the entire document, and
the abstract concept of the current selection. NSSelection objects for these selections are returned by the
emptySelection allSelection andcurrentSelectionclass methods.

Since an NSSelection may be used in a document that is read by machines with different architectures, care should
be taken to write machine-independent descriptions. For example, using a binary structure as a selection description
will fail on a machine where an identically defined structure has a different size or is kept in memory with different
byte ordering. Exporting (and then parsing) ASCII descriptions is often a good solution. If binary descriptions must
be used, it's prudent to preface the description with a token specifying the description’s byte ordering.

OpenStep Specification—10/19/94 Classes: NSSelectioh-187

It may also be prudent to version-stamp selection descriptions, so that old selections can be accurately read by
updated versions of an application.

Returning Special Selection Shared Instances

+ (NSSelection *allISelection Returns the shared instance of the well-known selection
representing the entire document.

+ (NSSelection ®urrentSelection Returns the shared instance of the well-known selection
representing the abstract concept of the current
selection. The current selection never describes a
specific selection; it describes a selection that may
change frequently.

+ (NSSelection ®mptySelection Returns the shared instance of the well-known selection
representing no data.

Creating and Initializing a Selection

+ (NSSelection §electionWithDescriptionData{NSData *pata
Creates and returns an NSSelection object that redatas

as the description of the selection.

— (id)initwithDescriptionData: (NSData *newData Initializes a newly allocated NSSelection object that
recordgdataas the description of the selection. Returns
the initialized object.

— (id)initWithPasteboard: (NSPasteboard pasteboard
Initializes a newly allocated NSSelection object that takes

its description of the selection fropasteboard
Returns the initialized object.

Describing a Selection

— (NSData *YescriptionData Returns the data that describes the selection as set by
selectionWithDescriptionData: or
initWithDescriptionData: .

— (BOOL)sWellKnownSelection Returns YES if the receiver is one of the well-known

selection types (those representing the entire document,
current selection, or empty selection) and NO
otherwise.

1-188 Chapter 1: Application Kit OpensStep Specification—10/19/94

Writing a Selection to the Pasteboard

— (voidwriteToPasteboard:(NSPasteboard pasteboard
Writes the selection data to the pastebqasteboard A
copy of the selection can then be retrieved by
initializing a new NSSelection from the pasteboard
usinginitWithPasteboard:.

OpenStep Specification—10/19/94 Classes: NSSelectioh-189

NSSlider

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSSlider.h

Class Description

NSSlider is a type of NSControl with a sliding knob that can be moved to represent a value between a minimum
and a maximum setting. A slider may be either horizontal or vertical, but its minimum value is always at the left or
bottom end of the bar, and the maximum at the right or top. By default, an NSSlider is a continuous NSControl: It
sends its action message to its target continuously while the user drags its knob. To configure an NSSlider to send
its action only when the mouse is released, seti@ontinuous:(an NSControl method) with an argument of NO.

An NSSlider can be configured to display an image, a title, or both, in the area behind its knob. An NSSlider's title
can be drawn in any gray level or color, and in any font available. An NSSlider's value can be set programmatically
with any of the standard NSControl value-setting methods, susdtfsatValue:

For more information, see the method descriptions in the NSSliderCell class specification.

Setting the Cell Class

+ (ClassgellClass Returns the class last set indCellClass:message, or the
NSSliderCell class ifetCellClass:has never been
called.

+ (void)setCellClass(Classtlassld Sets the class of NSCell used in the NSSlider.

Modifying an NSSlider's Appearance

— (NSImage *Image Returns the image within the NSSlider.

— (int)isVertical Returns 1 if the NSSlider is vertical, O if horizontal, -1 if
unknown.

— (floatknobThickness Returns the knob’s thickness as a float value (width if

horizontal slider, height if vertical slider).

— (voidsetimage(NSImage *packgroundimage Sets the image within the NSSlidertackgroundimage

1-190 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setKnobThickness(float)aFloat

— (void)setTitle:(NSString *aString
— (void)setTitleCell:(NSCell *)aCell

— (void)setTitleColor:(NSColor *)aColor
— (void)setTitleFont:(NSFont *fontObject

— (NSString *jitle
— (idytitleCell

— (NSCaolor *}itleColor
— (NSFont *}itleFont

Setting and Getting V alue Limits
— (doublenaxValue
— (doublejninValue
— (voidsetMaxValue:(doublepDouble
— (void)setMinValue:(doublepDouble

Handling Events

Sets the knob’s thickness (its width if the slider is
horizontal, height if vertical) taFloat, expressed in
units of the NSSlider’'s coordinate system.

Sets the title within the NSSlider to a copyadtring

Sets the NSCell (or subclass thereof) object used to draw
the title within the NSSlider. The cell object should
ideally be an instance of NSTextFieldCell or one of its
subclasses.

Sets the color of text in the title &Color.

Sets the NSFont object used for the title within the
NSSlider.

Returns the title within the NSSlider.

Returns the NSCell (or subclass thereof) object used to
draw the title within the NSSlider.

Returns the color of text in the title.

Returns the NSFont object used in drawing the title within
the NSSlider.

Returns theNSSlider's maximum value.
Returns the NSSlider's minimum value.
Sets the NSSlider's maximum valueaibouble

Sets the NSSlider's minimum valuea®ouble

— (BOOL)acceptsFirstMouse{NSEvent *theEvent Returns YES by default, since NSSliders always accept a

OpenStep Specification—10/19/94

mouse-down event that activates a window, whether or
not the NSSlider is enabled. Override this if you want
different behavior.

Classes: NSSliderl-191

NSSliderCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSSliderCell.h

Class Description

NSSliderCell is a type of NSCell used to assist the NSSlider class, and to build matrices of sliders. The
NSSliderCell encompasses all the visible portions of the NSSlider—the knob, the area along which the knob slides,
and the optional title within this area. See the NSSlider class specification for an overview of how NSSliderCells
work.

Determining Component Sizes

— (NSSizegellSizeForBounds{(NSRectaRect Returns the minimum width and height needed to draw the
NSSliderCell iraRect If aRecttoo small to fit the knob
and bezel, the width and heighttbéSizeare set to 0.0.

— (NSRectknobRectFlipped:(BOOL)flipped Gets the rectangle the knob will be drawrflipped
indicates whether the NSSliderCell's view has a flipped
coordinate system.

Setting Value Limits

— (doublenaxValue Returns the NSSliderCell's maximum value.

— (doubleininValue Returns the NSSliderCell’'s minimum value.

— (voidsetMaxValue:(doublepDouble Sets the maximum value of the NSSliderCethfouble
— (void)setMinValue:(doublepDouble Sets the NSSliderCell’s minimum valueabouble

Modifying Graphic Attributes

— (int)isVertical Returns 1 if the NSSliderCell is vertical, O if horizontal, -1
if unknown.

— (floatknobThickness Returns the knob’s thickness as a float value.

— (voidsetKnobThickness(float)aFloat Sets the knob’s thicknessafloat (width if a horizontal

slider, height if vertical).

1-192 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setTitle:(NSString *aString
— (void)setTitleCell:(NSCell *)aCell

— (void)setTitleColor:(NSColor *)aColor
— (void)setTitleFont:(NSFont *fontObject

— (NSString *}itle
— (id}titleCell

— (NSFont *JitleFont
— (NSCaolor *}itleColor
Displaying the NSSliderCell
— (voiddrawBarlInside: (NSRectaRect
flipped: (BOOL)flipped
— (void)drawKnob

— (void)rawKnob: (NSRectknobRect

Modifying Behavior

— (doublegltincrementValue

— (void)setAltincrementValue:(double)ncValue

OpenStep Specification—10/19/94

Sets the title within the NSSliderCell to a copya&tring

Sets the NSCell (or subclass thereof) object used to draw
the title within the NSSliderCell. The cell object should
ideally be an instance of NSTextFieldCell or one of its
subclasses.

Sets the color of text in the title &Color.

Sets the NSFont object used to draw the title within the
NSSliderCell.

Returns the title within the NSSliderCell.

Returns the NSCell (or subclass thereof) object used to
draw the title within the NSSliderCell.

Returns the NSFont object used in drawing the title within
the NSSliderCell.

Returns the color of text in the title.

Draws the NSSliderCell's background bar (but not the
bezel around it or the knob) &Rect flippedindicates
whether the NSView’s coordinate system is flipped.

Draws the NSSliderCell’'s knob after calculating the
drawing rectangle.

Draws the NSSliderCell's knob knobRect

Returns the increment by which the NSSliderCell modifies
its value when its knob is Alternate-dragged one pixel.

Sets the amount by which the NSSliderCell modifies its
value when the knob is dragged one pixel with the
Alternate key held down.

Classes: NSSliderCell-193

Tracking the Mouse

+ (BOOL)prefersTrackingUntilMouseUp

— (NSRectirackRect

1-194 Chapter 1: Application Kit

Returns YES to allow NSSliderCell objects to track even
when the mouse leaves their bounds. Override this
method to return NO if you want the NSSliderCell to
stop tracking once the mouse leaves its bounds.

Returns the rectangle used in tracking the mouse (only
valid while tracking).

OpenStep Specification—10/19/94

NSSpellChecker

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSSpellChecker.h

Class Description

The NSSpellChecker class gives any application an interface to the OpenStep spell-checking service. To handle all
its spell checking, an application needs only one instance of NSSpellChecker. It provides a panel in which the user
can specify decisions about words that are suspect. To check the spelling of a piece of text, the application:

* Includes in its user interface a menu item (or a button or command) by which the user will request spell
checking.

» Makes the text available by way of an NSString object.

» Creates an instance of the NSSpellChecker class and sentie@k&pellingOfString:startingAt:
message.

For example, you might use the following statement to create an NSSpellChecker:

range = [[NSSpellChecker sharedSpellChecker] checkSpellingOfString:aString startingAt:0];

ThecheckSpellingOfString:startingAt: method checks the spelling of the words in the specified string beginning
at the specified offset (this example uses 0 to start at the beginning of the string) until it finds a word that is
misspelled. Then it returns an NSRange to indicate the location of the misspelled word.

In a graphical application, whenever a misspelled word is found, you'll probably want to highlight the word in the
document, using the NSRange ttla¢ckSpellingOfString:startingAt: returned to determine the text to highlight.

Then you should show the misspelled word in the Spelling panel’s misspelled-word field by calling
updateSpellingPanelWithMisspelledWord: If checkSpellingOfString:startingAt: does not find a misspelled

word, you should calipdateSpellingPanelWithMisspelledWord:with the empty string. This causes the system

to beep, letting the user know that the spell check is complete and no misspelled words were found. None of these
steps is required, but if you do one, you should do them all.

The object that provides the string being checked should adopt the following protocols:

NSChangeSpelling A message in this protocbhfgeSpelling) is sent down the responder chain
when the user presses the Correct button.

NSlIgnoreMisspelledWords When the object being checked responds to this protocol, the spell server keeps
a list of words that are acceptable in the document and enables the Ignore
button in the Spelling panel.

OpenStep Specification—10/19/94 Classes: NSSpellCheck#195

The application may choose to split a document’s text into segments and check them separately. This will be
necessary when the text has segments in different languages. Spell checking is invoked for one language at a time,
so a document that contains portions in three languages will require at least three checks.

Dictionaries and Word Lists
The process of checking spelling makes use of three references:

« A dictionary registered with the system’s spell-checking service. When the Spelling panel first appears, by
default it shows the dictionary for the user’s preferred language. The user may select a different dictionary
from the list in the Spelling panel.

» The user's'learr’ list of correctly-spelled words in the current language. The NSSpellChecker updates the
list when the user presses the Learn or Forget buttons in the Spelling panel.

e The document’s list of words to be ignored while checking it (if the first responder conforms to the
NSlIgnoreMisspelledWords protocol). The NSSpellChecker updates its copy of this list when the user
presses the Ignore button in the Spelling panel.

A word is considered to be misspelled if none of these three accepts it.
Matching a List of Ignored Words with the Document It Belongs To

The NSString being checkésh't the same ahe document. In the course of processing a document, an
application might run several checks based on different parts or different versions of the text. But they’d all belong
to the same document. The NSSpellChecker keeps a sepanaied words list for each document that it checks.

To help matcHignored words lists to documents, you should caliqueSpellDocumentTagonce for each

document. This method returns a unique arbitrary integer that will serve to distinguish one document from the
others being checked and to match éaghored words3 list to a document. When searching for misspelled words,
pass the tag as the fourth argument of
checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount:. (The

convenience methatheckSpellingOfString:startingAt: takes no tag. This method is suitable when the first
responder does not conform to the NSlgnoreMisspelledWords protocol.)

When the application saves a document, it may choose to retrictigribeed words list and save it along with
the document. To get back the right list, it must send the NSSpellChecker an
ignoredWordsInSpellDocumentWithTag: message. When the application has closed a document, it should
notify the NSSpellChecker that the documehiggored word$ list can now be discarded, by sending it a
closeSpellDocumentWithTag:message. When the application reopens the document, it should restore the
“ignored words” list with the messagetlgnoredWords:inSpellDocumentWithTag:

Making a Checker available
+ (NSSpellChecker yharedSpellChecker Returns the NSSpellChecker (one per application).

+ (BOOL)sharedSpellCheckerExists Returns whether the application’s NSSpellChecker has
already been created.

1-196 Chapter 1: Application Kit OpenStep Specification—10/19/94

Managing the Spelling Panel
— (NSView *)accessoryView Returns the Spelling panel’'s accessory NSView object.

— (void)setAccessoryView(NSView *)aView Makes an NSView object an accessory of the Spelling
panel by making it a subview of the panel’'s content
view. This method posts the notification
NSWindowDidResizeNotification with the Spelling
panel object to the default notification center.

— (NSPanel *3pellingPanel Returns the NSSpellChecker’s panel.

Checking Spelling

— (int)}countWordsInString: (NSString *aString Returns the number of wordsstring. Thelanguage
language(NSString *Janguage argument specifies the language used in the string. If
languagds the empty string, the current selection in the
Spelling panel’'s pop-up menu is used.

— (NSRangea)heckSpellingOfString:(NSString *stringToCheck
startingAt: (int)startingOffset Starts the search for a misspelled wordtimgToCheck
starting attartingOffsewithin the string object.
Returns the range of the first misspelled word.
Wrapping occurs but no ignored-words dictionary is
used.

— (NSRanga&heckSpellingOfString:(NSString *stringToCheck

startingAt: (int)startingOffset Starts the search for a misspelled wordtimgToCheck
language(NSString *Janguage starting astartingOffsetwithin the string object.

wrap: (BOOL)wrapFlag Returns the range of the first misspelled word and
inSpellDocumentWithTag:(int)tag optionally the word count by referendagis an
wordCount: (int *)wordCount identifier unique within the application used to inform

the spell check which document (actually, a dictionary)
of ignored words to usarapFlagdetermines whether
spell checking continues at the beginning of the string
when the end is reachddnguageis the language used
in the string. Iflanguages the empty string, the current
selection in the Spelling panel's pop-up menu is used.

Setting the Language

— (NSString *Janguage Returns the current language used in spell-checking.

— (BOOL)setLanguagefNSString *aLanguage Sets the language to use in spell-checkirgl@mnguage
Returns whether the Language pop-up list in the
Spelling panel listaLanguage

OpenStep Specification—10/19/94 Classes: NSSpellCheck&f197

Managing the Spelling Process

+ (int)uniqueSpellDocumentTag Returns a guaranteed unique tag to use as the
spell-document tag for a document. Use this method to
generate tags to avoid collisions with other objects that
can be spell-checked.

— (void)closeSpellDocumentWithTag(int)tag Notifies the NSSpellChecker that the user has finished with
the ignored-word document identified fag, causing it
to throw that dictionary away.

— (void)ignoreWord: (NSString *wordTolgnore Instructs the NSSpellChecker to ignore all future
inSpellDocumentWithTag:(int)tag occurrences ofvordTolgnorein the document
identified bytag. You should call this method from
within your implementation of the
NSlIgnoreMisspelledWords protocoignoreSpelling..

— (NSArray *jgnoredWordsInSpellDocumentWithTag:(int)tag
Returns the array of ignored words for a document
identified bytag. Invoke this before
closeSpellDocumentif you want to store the ignored
words.

— (void)setignoredWords:(NSArray *)someWords Initializes the ignored-words document (i.e., dictionary
inSpellDocumentWithTag:(int)tag identified bytag with someWordsan array of wordto
ignore.

— (void)setWordFieldStringValue:(NSString *aString
Sets the string that appears in the misspelled word field,
using the string obje@String

— (voidupdateSpellingPanelWithMisspelledWord(NSString *Wword

Causes NSSpellChecker to update the Spelling panel’s
misspelled-word field to reflegtord. You are
responsible for highlighting/ord in the document and
for extracting it from the document using the range
returned by theheckSpelling:...methods. Pass the
empty string asvord to have the system beep,
indicating no misspelled words were found.

1-198 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSSpellServer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSSpellServer.h

Class Description

The NSSpellServer class gives you a way to make your particular spelling checker a service that's available to any
application. Aserviceis an application that declares its availability in a standard way, so that any other applications
that wish to use it can do so. If you build a spelling checker that makes use of the NSSpellServer class and list it as
an available service, then users of any application that makes use of NSSpellChecker or includes a Services menu
will see your spelling checker as one of the available dictionaries.

To make use of NSSpellServer, you write a small program that creates an NSSpellServer instance and a delegate
that responds to messages asking it to find a misspelled word and to suggest guesses for a misspelled word. Send
the NSSpellServeegisterLanguage:byVendor: messages to tell it the languages your delegate can handle.

The program that runs your spelling checker should not be built as an Application Kit application, but as a simple
program. Suppose you supply spelling checkers under the vendor name “Acme.” Suppose the file containing the
code for your delegate is called AcmeEnglishSpellChecker. Then the following might be your progaam’s

void main()

{
NSSpellServer *aServer = [[NSSpellServer alloc] init];

if ([aServer registerLanguage:@"English" byVendor:@"Acme"]) {
[aServer setDelegate:[AcmeEnglishSpellChecker alloc] init]];
[aServer run];
fprintf(stderr, "Unexpected death of Acme SpellCheckerl\n");

}else {
fprintf(stderr, "Unable to check in Acme SpellChecker.\n");

}

}

Your delegate is an instance of a custom subclass. (It's simplest to make it a subclass of NSObiject, but that's not a
requirement.) Given an NSString, your delegate must be able to find a misspelled word by implementing the
methodspellServer:findMisspelledWordInString:language:wordCount:countOnly:. Usually, this method also

reports the number of words it has scanned, but that isn’t mandatory.

Optionally, the delegate may also suggest corrections for misspelled words. It does so by implementing the method
spellServer:suggestGuessesForWord:inLanguage:

OpenStep Specification—10/19/94 Classes: NSSpellServet-199

Service Availability Notice

When there’s more than one spelling checker available, the user selects the one desired. The application that
requests a spelling check uses an NSSpellChecker object, and it provides a Spelling panel; in the panel there’s a
pop-up list of available spelling checkers. Your spelling checker appears in that list if #dr@ga descriptor

A service descriptor is an entry in a text file calledvices Usually it’s located within the bundle that also contains
your spelling checker’s executable file. The bundle (or directory) that contains the services file must have a name
ending in “.service” or “.app”. The system looks for service bundles in a standard set of directories.

A spell checker service availability notice has a standard format, illustrated in the following example for the Acme
spelling checker:

Spell Checker: Acme
Language: French
Language: English
Executable: franglais.daemon

The first line identifies the type of service; for a spelling checker, it must say “Spell Checker:” followed by your
vendor name. The next line contains the English name of a language your spelling checker is prepared to check.
(The language must be one your system recognizes.) If your program can check more than one language, use an
additional line for each additional language. The last line of a descriptor gives the name of the service’s executable
file. (It requires a complete path if it's in a different directory.)

If there’s a service descriptor for your Acme spelling checker and also a service descriptor for the English checker
provided by a vendor named Consolidated, a user looking at the Spelling panel’'s pop-up list would see:

English (Acme)
English (Consolidated)
French (Acme)

lllustrative Sequence of Messages to an NSSpellServer

The act of checking spelling usually involves the interplay of objects in two classes: the user application’s
NSSpellChecker (which responds to interactions with the user) and your spelling checker’s NSSpellServer (which
provides the application interface for your spelling checker). You can see the interaction between the two in the
following list of steps involved in finding a misspelled word.

» The user of an application selects a menu item to request a spelling check. The application sends a message
to its NSSpellChecker object. The NSSpellChecker in turn sends a corresponding message to the appropriate
NSSpellServer.

» The NSSpellServer receives the message asking it to check the spelling of an NSString. It forwards the
message to its delegate.

» The delegate searches for a misspelled word. If it finds one, it returns an NSRange identifying the word’s
location in the string.

» The NSSpellServer receives a message asking it to suggest guesses for the correct spelling of a misspelled
word, and forwards the message to its delegate.

1-200 Chapter 1: Application Kit OpenStep Specification—10/19/94

« The delegate returns a list of possible corrections, which the NSSpellServer in turn returns to the
NSSpellChecker that initiated the request.

» The NSSpellServer doesn’'t know what the user does with the errors its delegate has found or with the
guesses its delegate has proposed. (Perhaps the user corrects the document, perhaps by selecting a correction
from the NSSpellChecker’s display of guesses; but that's not the NSSpellServer’s responsibility.) However,
if the user presses the Learn or Forget buttons (thereby causing the NSSpellChecker to revise the user’s word
list), the NSSpellServer receives a notification of the word thus learned or forgotten. It's up to you whether
your spell checker acts on this information. If the user presses the Ignore button, the delegate is not notified
(but the next time that word occurs in the text, the meigisdrdinUserDictionaries:caseSensitivewill
report YES rather than NO).

» Once the NSSpellServer delegate has reported a misspelled word, it has completed its search. Of course, it's
likely that the user’s application will then send a new message, this time asking the NSSpellServer to check
a string containing the part of the text it didn't get to earlier.

Checking in Your Service

— (BOOLYegisterLanguage(NSString *Janguage Registers a spelling server fanguageby vendor
byVendor:(NSString *)endor

Assigning a Delegate
— (id)delegate Returns the NSSpellServer’s delegate.
— (void)setDelegate(id)anObiject Sets the delegate of the NSSpellServer.

Running the Service

— (voidyun Makes the NSSpellServer start listening for spell-checking
requests. This method should not return.

Checking User Dictionaries

— (BOOL)sWordInUserDictionaries: (NSString *)word
caseSensitivgBOOL)flag Returns whetheword is in any open user dictionary; the
search is case-sensitiveldgis YES.

OpenStep Specification—10/19/94 Classes: NSSpellServet-201

Methods Implemented by the Delegate

— (NSRangegypellServer(NSSpellServer 9ender Search for a misspelled wordstringToCheckusing

findMisspelledWordInString: language and marking the firghisspelled word found
(NSString *stringToCheck by returning its range within the string object. In
language(NSString *Janguage wordCounteturn by reference the number of words
wordCount: (int *)wordCount from the beginning of the string object until the
countOnly:(BOOL)countOnly misspelled word (or the end-of-string) cfuntOnlyis

YES, just count the words in the string object; do not
spell-check. Send
isWordInUserDictionaries:caseSensitiveto the
spelling server to determineviford exists in the user’s
language dictionaries.

— (NSArray *spellServer(NSSpellServer Jender Search for alternatives to the misspeliaatd in
suggestGuessesForWor@NSString *word language Return guesses as an array of string objects.
inLanguage:(NSString *Janguage

— (void)spellServer(NSSpellServer Jender Notifies the delegate ofvaord added to the user’s hidden
didLearnWord: (NSString *word word list.
inLanguage(NSString *Janguage

— (void)spellServer(NSSpellServer §ender Notifies the delegate ofvaord removed from the user’s
didForgetWord: (NSString *)word hidden word list.

inLanguage:(NSString *Janguage

1-202 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSSplitView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSplitView.h

Class Description

An NSSplitView object lets several views share a region within a window. The NSSplitView resizes its subviews
so that each subview is the same width as the NSSplitView, and the total of the subviews’ heights is equal to the
height of the NSSplitView. The NSSplitView positions its subviews so that the first subview is at the top of the
NSSplitView, and each successive subview is positioned below the previous one. The user can set the height of two
subviews by moving a horizontal bar called dinader, which makes one subview smaller and the other larger.

To add a view to an NSSplitView, you use the NSView metdutSubview: When the NSSplitView is displayed,

it checks to see if its subviews are properly tiled. If not, it invokes the delegate method
splitView:resizeSubviewsWithOIldSize; allowing the delegate to specify the heights of specific subviews. If the
delegate doesn’t implement this methibe, NSSplitViewsendsadjustSubviewsto itself to yield the default tiling
behavior.

When a mouse-down occurs in an NSSplitView’s divider, the NSSplitView determines the limits of the divider’s
travel and tracks the mouse to allow the user to drag the divider within these limits. With the following mouse-up,
the NSSplitView resizes the two affected subviews, informs the delegate that the subviews were resized, and
displays the affected views and divider. The NSSplitView’s delegate can constrain the travel of specific dividers by
implementing the methasblitView:constrainMinCoordinate:maxCoordinate:ofSubviewAt: .

Managing Component V iews

— (void)adjustSubviews Adjusts the heights of the subviews.
— (floatdividerThickness Returns the thickness of the divider.
— (voidrawDividerInRect: (NSRectaRect Draws the divider iraRect

Assigning a Delegate
— (id)delegate Returns the NSSplitView's delegate.
— (voidsetDelegategiid)anObject Sets the NSSplitView's delegate.

OpenStep Specification—10/19/94 Classes: NSSplitViewi-203

Implemented by the Delegate

— (void)splitView: (NSSplitView *)splitView Sent directly bysplitViewto the delegate. Allows the
constrainMinCoordinate: (float *)min delegate to constrain furtherin andmax
maxCoordinate:(float *)max vertical travel of a divideoffsetis an index that
ofSubviewAt:(int)offset identifies the dividers in a NSSplitView from top to

bottom starting with divider O.

— (void)splitView: (NSSplitView *)sender Sent directly bysplitViewto the delegate. Allows the
resizeSubviewsWithOldSize(NSSizebldSize delegate to add custom resizing behavior after users
resize an NSSplitViewldSizeis the size of the
NSSplitView before the user resized it.

— (voidsplitViewDidResizeSubviewsNSNotification *notification
Sent by the default notification center to the delegate;
aNotificationis always
NSSplitViewDidResizeSubviewsNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (void)splitViewWillResizeSubviews(NSNotification *notification
Sent by the default notification center to the delegate;
aNotificationis always
NSSplitViewWillResizeSubviewsNoatification. If the
delegate implements this method, it's automatically
registered to receive this notification.

1-204 Chapter 1: Application Kit OpenStep Specification—10/19/94

NST ext

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling, NSlgnoreMisspelledWords
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKIit/NSTextView.h

Class Description

The NSText class declares the programmatic interface to objects that manage text. NSText objects are used by the
Application Kit wherever text appears in interface objects: An NSText object draws the title of a window, the
commands in a menu, the title of a button, and the items in a browser. Your application inherits these uses of the
NSText class when it incorporates any of these objects into its interface. Your application can also create NSText
objects for its own purposes.

The NSText class is unlike most other classes in the Application Kit in its complexity and range of features. One
of its design goals is to provide a comprehensive set of text-handling features so that you'll rarely need to create a
subclass. An NSText object can (among other things):

Control the color of its text and background.

Control the font and layout characteristics of its text.
Control whether text is editable.

Wrap text on a word or character basis.

Display graphic images within its text.

Write text to or read text from files in the form of RTFD—Rich Text Format files that contain TIFF or EPS
images.

Let another object, the delegate, dynamically control its properties.

Let the user copy and paste text within and between applications.

Let the user copy and paste font and format information between NSText objects.
Let the user check the spelling of words in its text.

Let the user control the format of paragraphs by manipulating a ruler.

OpenStep Specification—10/19/94 Classes: NSTextl-205

Graphical user-interface building tools (such as Interface Builder) may give you access to NSText objects in several
different configurations, such as those found in the NSTextField, NSForm, and NSScrollView objects. These
classes configure an NSText object for their own specific purposes. Additionally, all NSTextFields, NSForms,
NSButtons within the same window—in short, all objects that access an NSText object through associated Cells—
share the same NSText object, reducing the memory demands of an application. Thus, it's generally best to use one
of these classes whenever it meets your needs, rather than create NSText objects yourself. If one of these classes
doesn’t provide enough flexibility for your purposes, you can create NSText objects programatically.

Plain and Rich NSText Objects

When you create an NSText object directly, by default it allows only one font, line height, text color, and paragraph
format for the entire text. Once an NSText object is created, you can alter its global settings using methods such as
setFont: andsetTextColor:. For convenience, such an NSText object will be callpldia NSText object.

To allow multiple values for attributes such as font and color, you must send the NSText séfjRatlalext:YES
message. An NSText object that allows multiple fonts also allows multiple paragraph formats, line heights, and so
on. For convenience, such an NSText object will be callechdNSText object.

A rich NSText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words are
supported: On input, an NSText object ignores any control word it doesn't recognize; some of those it can read and
interpret it doesn’t write out. These are the RTF control words that an NSText object recognizes.

1-206 Chapter 1: Application Kit OpensStep Specification—10/19/94

Control Word Read Write

\ansi yes yes
\b yes yes
\cb yes yes
\cf yes yes
\colortbl yes yes
\dnn yes yes
\fin yes yes
\fn yes yes
\fonttbl yes yes
\fsn yes yes
\i yes yes
\lin yes yes
\margrn yes yes
\paperwn yes yes
\mac yes no
\margin yes yes
\par yes yes
\pard yes no
\pca yes no
\qc yes yes
\ql yes yes
\gr yes yes
\sn yes no
\tab yes yes
\upn yes yes

NSText objects are designed to work closely with various other objects. Some of these—such as the delegate or an
embedded graphic object—require a degree of programming on your part. Others—such as the Font panel, spelling
checker, or ruler—take no effort other than deciding whether the service should be enabled or disabled. The
following sections discuss these interrelationships.

OpenStep Specification—10/19/94 Classes: NSTextl-207

Notifying the NST ext Object's Delegate

Many of an NSText object’s actions can be controlled through an associated object, the NSText object’s delegate.
If it implements any of the following methods, the delegate receives the corresponding message at the appropriate
time:

textDidBeginEditing:
textDidChange:
textDidEndEditing:
textShouldBeginEditing:
textShouldEndEditing:

So, for example, if the delegate implementaéx¢DidBeginEditing: method, it will receive notification upon the

user’s first attempt to change the text. Moreover, depending on the method’s return value, the delegate can either
allow or prohibit changes to the text. See “Methods Implemented by the Delegate”. The delegate can be any object
you choose, and one delegate can control multiple NSText objects.

Adding Graphics to the Text

A rich NSText object allows graphics to be embedded in the text. Each graphic is treated as a single (possibly large)
“character”: The text’s line height and character placement are adjusted to accommodate the graphic “character.”
Graphics are embedded in the text in either of two ways: programmatically or directly through user actions. In the

programmatic approach, graphic objects are added usimgplaeeRange:WithRTFD: method.

An alternate means of adding an image to the text is for the user to drag an EPS or TIFF file icon directly into an
NSText object. The NSText object automatically creates a graphic object to manage the display of the image. This
feature requires a rich NSText object that has been configured to receive dragged images—see the
setimportsGraphics: method.

Images that have been imported in this way can be written as RTFD documents. Programmatic creation of RTFD
documents is not supported in this version of OpenStep. RTFD documents use a file package, or directory, to store
the components of the document (the “D” stands for “directory”). The file package has the name of the document
plus a “.rtfd” extension. The file package always contains a file called TXT.rtf for the text of the document, and one
or more TIFF or EPS files for the images. An NSText object can transfer information in an RTFD document to a
file and read it from a file—see theiteRTFDToFile:atomically: andreadRTFDFromFile: methods.

Cooperating with Other Objects and Ser vices

NSText objects are designed to work with the Application Kit's font conversion system. By default, an NSText
object keeps the Font panel updated with the font of the current selection. It also changes the font of the selection
(for a rich NSText object) or of the entire text (for a default NSText object) to reflect the user’s choices in the Font
panel or menu. To disconnect an NSText object from this service, sesetliisesFontPanel:NOnessage.

If an NSText object is a subview of an NSScrollView, it can cooperate with the NSScrollView to display and update
a ruler that displays formatting information. The NSScrollView retiles its subviews to make room for the ruler, and
the NSText object updates the ruler with the format information of the paragraph containing the selection. The
toggleRuler: method controls the display of this ruler. Users can modify paragraph formats by manipulating the
components of the ruler.

1-208 Chapter 1: Application Kit OpensStep Specification—10/19/94

Coordinates and sizes mentioned in the method descriptions below are in PostScript units—1/72 of an inch.

Getting and Setting Contents

— (voidyeplaceRange(NSRangejange

withRTF: (NSData *)tfData

— (voidyeplaceRange(NSRangejange
withRTFD: (NSData *)tfdData

— (NSData *RTFDFromRange:(NSRangeange

— (NSData *RTFFromRange:(NSRangejange

— (void)setText(NSString *}string

— (void)setText:(NSString *}tring
range:(NSRangeange

— (NSString *Jext

Managing Global Characteristics

— (NSTextAlignmen@lignment

— (BOOL)rawsBackground

— (BOOL)mportsGraphics
— (BOOL)isEditable

— (BOOL)sRichText

— (BOOL)isSelectable

— (void)setAlignment:(NSTextAlignmentinode

— (void)setDrawsBackground(BOOL)flag

— (void)setEditable:(BOOL)flag

— (void)setimportsGraphics:(BOOL)flag

OpenStep Specification—10/19/94

Replaces the characters within the speciféedje of
text with the RTF datefData.

Replaces the characters within the specifeed)e of
text with the RTFD datefdData.

Extracts the specifie@ngeof RTFD text from the NSText
object and returns an data object initialized with that
text.

Extracts the specifiedingeof RTF text from the NSText
object and returns a data object initialized with that text.
This data is formatted according to the RTF file format.

Sets the contents of the NSText object tctoeg.

Replaces the characters in the specifiedeof text in the
NSText object to bstring.

Returns the contents of the NSText object as a immutable
string object.

Returns how text in the NSText object is aligned between
the margins.

Returns whether the NSText object draws its own
background.

Returns whether the NSText object can accept images.
Returns whether users can edit the NSText object.

Returns whether the text in the NSText object is RTF.
Returns whether users can select text in the NSText object.

Sets how the text in the NSText object is aligned between
the margins.

Sets whether the NSText object draws its own background.
Sets whether users can edit text in the NSText object.

Sets whether the NSText object can accept images.

Classes: NSTextl-209

— (voidsetRichText(BOOL)flag

— (void)setSelectablgBOOL)flag

Managing Font and Color
— (NSColor *packgroundColor
— (void)changeFont(id)sender
— (NSFont *jont
— (void)setBackgroundColor(NSColor *)color

— (void)setColor:(NSColor *)color
ofRange(NSRangerange

— (void)setFont(NSFont *pbj

— (void)setFont(NSFont *font
ofRange(NSRangegange

— (voidsetTextColor:(NSColor *)color
— (void)setUsesFontPane{BOOL)flag
— (NSColor *textColor

— (BOOL)usesFontPanel

Managing the Selection
— (NSRangejelectedRange
— (void)setSelectedRang€éNSRangeange

Sizing the Frame Rectangle
— (BOOL)isHorizontallyResizable
— (BOOL)sVerticallyResizable
— (NSSizejnaxSize
— (NSSizeinSize
— (void)setHorizontallyResizable(BOOL)flag

1-210 Chapter 1: Application Kit

Sets whether the text in the NSText object allows for
multiple values of attributes, such as color and font (i.e.
RTF).

Sets whether users can select text in the NSText object.

Returns the background color for the NSText object.
Initiates a font-change session.

Returns the default NSFont object for the NSText object.
Sets the background color for the NSText object.

Sets the color for the specifiemhgeof text in the
NSText object taolor.

Sets the default NSFont object for the NSText object.

Sets the font for the specifiegngeof text in the
NSText object tdont

Sets the textual color for the NSText object.
Sets whether the NSText object uses the font panel.
Returns the textual color for the NSText object.

Returns whether the NSText object uses the font panel

Returns the range of the selected text in the NSText object.

Sets theangeof selected text in the NSText object.

Returns whether the frame width can change.
Returns whether the frame height can change.
Gets the maximum size of the NSTextView’s frame.
Gets the minimum size of the NSTextView’s frame.

Sets whether the frame’s width can change.

OpensStep Specification—10/19/94

— (voidsetMaxSize(NSSizepewMaxSize

— (void)setMinSize(NSSizehewMinSize
— (void)setVerticallyResizable(BOOL)flag
— (void)sizeToFit

Responding to Editing Commands
— (voidjalignCenter:(id)sender
— (void)alignLeft: (id)sender
— (voidjalignRight: (id)sender
— (void)copy:(id)sender
— (void)xopyFont:(id)sender
— (void)copyRuler:(id)sender
— (void)cut: (id)sender

— (voiddelete{(id)sender

— (void)pasteyid)sender

— (void)yasteFont{(id)sender

— (void)pasteRuler;(id)sender
— (void)selectAll:(id)sender
— (void)subscript:(id)sender

— (void)superscript:(id)sender

OpenStep Specification—10/19/94

Sets the maximum size of the NSText object to
newMaxSize

Sets the minimum size of the NSText objectéaMinSize
Sets whether the frame’s height can change.

Resizes the frame to fit just around the text.

Centers the selected text between the margins.

Aligns selected text to the left margin.

Aligns selected text the right margin.

Copies the selected text to the pasteboard.

Copies the selected text’s font to the pasteboard.

Copies the selected text’s ruler to the pasteboard.
Deletes the selected text and copies it to the pasteboard.

Deletes the selected text. This method posts the notification
NSTextDidChangeNotification with the receiving
object to the default notification center and may post the
NSTextDidBeginEditing notification as well.
(NSTextDidEndEditingNotification gets posted when
the first responder changes.)

Replaces the selected text with the contents of the
pasteboard. This method posts the notification
NSTextDidChangeNotification with the receiving
object to the default notification center and may post the
NSTextDidBeginEditing notification as well.

Replaces the selection’s font with the pasteboard contents.
This method posts the NSTextDidChangeNotification
notification with the receiving object to the default
notification center and may post the
NSTextDidBeginEditing notification as well.

Replaces the selection’s ruler with the pasteboard contents.
Selects all text in the NSText object.
Subscripts the current selection.

Superscripts the current selection.

Classes: NSTextl-211

— (voidunderline:(id)sender

— (voidunscript: (id)sender

Managing the Ruler
— (BOOL)sRulerVisible

— (voidtoggleRuler:(id)sender

Spelling
— (voidxheckSpelling(id)sender
— (voidshowGuessPane{id)sender

Scrolling

— (void)scrollRangeToVisible(NSRangejange
Reading and Writing RTFD Files

— (BOOLYeadRTFDFromFile: (NSString *path

— (BOOLWwriteRTFDToFile: (NSString *path
atomically: (BOOL)flag

Managing the Field Editor
— (BOOL)isFieldEditor

— (void)setFieldEditor:(BOOL)flag

Managing the Delegate
— (id)delegate
— (voidsetDelegate(id)anObject

1-212 Chapter 1: Application Kit

Underlines the selected text.

Removes superscript or subscript in the current selection.

Returns whether the ruler is visible.

Displays the ruler if it's not visible, and removes it if it is
visible.

Initiates a spell-checking session.

Displays the spell-checker's Show Guess panel.

Scrolls the NSText object so that taegeof text is visible.

Reads RTFD data from the file package specifieplably
and initializes an NSText object with it; returns whether
the operation succeeded.

Writes RTFD data from the receiving NSText object
to the file package specified pgith flag determines
whether writing occurs atomically. Returns whether the
operation succeeded.

Returns whether the receiving NSText object gives up First
Responder status on tab, carriage return, etc.

Sets whether the receiving NSText object is to be used as a
field editor.flag indicates whether to end on carriage
return, tab, or other terminating character.

Returns the delegate of the NSText object.

MakesanObjectthe NSText object’s delegate.

OpensStep Specification—10/19/94

Implemented by the Delegate

— (void)textDidBeginEditing: (NSNotification *aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSTextDidBeginEditingNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (voidtextDidChange:(NSNatification *)aNotification
Sent by the default notification center to the delegate;
aNotificationis always NSTextDidChangeNatification.
If the delegate implements this method, it's
automatically registered to receive this naotification.

— (void)textDidEndEditing: (NSNotification *)aNotification
Sent by the default notification center to the delegate;
aNotificationis always
NSTextDidEndEditingNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (BOOL)textShouldBeginEditing:(NSText *)textObject
Sent directly bytextObjectto the delegate. Informs
delegate of an impending textual change. YES means
go ahead and make the change.

— (BOOL)extShouldEndEditing: (NSText *textObject
Sent directly bytextObjecto the delegate. Warns delegate
of the impending loss of First Responder status. YES
means go ahead and change status.

OpenStep Specification—10/19/94 Classes: NSTextl-213

NST extField

Inherits From: NSControl : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSTextField.h

Class Description

An NSTextField is an NSControl object that can display a piece of text that a user can select or edit, and which
sends an action message to its target if the user hits the Return key while editing. An NSTextField can also be linked
to other NSTextFields, so that when the user presses Tab or Shift-Tab, the object assigned as the “next” or
“previous” field gets a message to select its text.

An NSTextField is a good alternative to an NSText object for small regions of editable text, since the display of the
NSTextField is achieved by using a global NSText object shared by objects all over your application, which saves
on memory usage. Each NSWindow also has an NSText object used for editing of NSTextFields (and
NSTextFieldCells in NSMatrices). An NSWindow's global NSText object is calliedideeditor since it's attached

as needed to an NSTextField to perform its editing. NSTextField allows you to specify an object to act as an indirect
delegate to the field editor; the NSTextField itself acts as the NSText delegate if it needs to, then passes the delegate
method on to its own NSText delegate.

Setting User Access to Text

— (BOOL)sEditable Returns whether the NSTextField’s text is editable.

— (BOOL)isSelectable Returns whether the NSTextField’s text is selectable.

— (voidsetEditable(BOOL)flag Sets whether the NSTextField's text is editable.

— (void)setSelectablgBOOL)flag Sets whether the NSTextField's text is selectable.
Editing Text

— (void)selectText(id)sender Selects all of the text if it's selectable or editable.

Setting Tab Key Behavior

— (id)nextText Gets the object selected when the user presses Tab.
— (id)previousText Gets the object selected when the user presses Shift-Tab.
— (void)setNextText{id)anObject Sets the object selected when the user presses Tab.

1-214 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)setPreviousText(id)anObject

Assigning a Delegate

— (voidsetDelegategiid)anObject

— (id)delegate

Modifying Graphic Attributes
— (NSCaolor *packgroundColor
— (BOOL)rawsBackground

— (BOOL)sBezeled

— (BOOL)sBordered

— (void)setBackgroundColor(NSColor *)aColor
— (void)setBezeledBOOL)flag

— (void)setBordered{BOOL)flag

— (void)setDrawsBackground(BOOL)flag

— (void)setTextColor:(NSColor *aColor
— (NSCaolor *textColor

Target and Action
— (SEL)rrorAction
— (void)setErrorAction: (SEL)aSelector

Handling Events

— (BOOL)acceptsFirstResponder

OpenStep Specification—10/19/94

Sets the object selected when the user presses Shift-Tab.

Sets the delegate for messages from the field editor to
anObject

Returns the delegate for messages from the field editor.

Returns the color of the background.

Returns whether the NSTextField draws its own
background.

Returns whether the NSTextField has a bezeled border.
Returns whether the NSTextField has a plain border.
Sets the color of the backgroundai@olor.

Sets whether the NSTextField has a bezeled border.
Sets whether the NSTextField has a plain border.

Sets whether the NSTextField draws its own background
color.

Sets the color of the NSTextField’s textGolor.

Returns the color of the NSTextField’s text.

Returns the action method sent for an invalid value.

Sets the action method seaBglectoy for an invalid value
entered.

Return YES if text is editable or selectable.

Classes: NSTextField-215

— (void)textDidBeginEditing: (NSNotification *notification

Invoked when there’s a change in the text after the receiver
gains first responder status. The default behavior is to
pass this message on to the text delegate by posting the
notification NSControlTextDidEndEditingNotification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

— (void)textDidChange:(NSNotification *notification
Invoked upon a key-down event or paste operation that

changes the receiver’s contents. The default behavior is
to pass this message on to the text delegate by posting
the NSControlTextDidChangeNotification notification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

— (voidtextDidEndEditing: (NSNatification *notification
Invoked when text editing ends. The default behavior is to
pass this message on to the text delegate by posting the
notification NSControlTextDidEndEditingNotification
with the receiving object and, in the notification’s
dictionary, the text object (with the key NSFieldEditor)
to the default notification center.

— (BOOL)extShouldBeginEditing:(NSText *}extObject
Invoked to let the NSTextField respond to impending
changes to its text and then forwarded to the text
delegate.

— (BOOL)textShouldEndEditing: (NSText *}textObject
Invoked to let the NSTextField respond to impending loss
of first responder status and then forwarded to the text
delegate.

1-216 Chapter 1: Application Kit OpenStep Specification—10/19/94

NST extFieldCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSTextFieldCell.h

Class Description

NSCells display text or images—an NSTextFieldCell is simply an NSCell that displays text and that keeps track of
its background and text colors. Normally, the NSCell class assumes white as the background when bezeled, and
light gray otherwise, and the text is always black. With NSTextFieldCell, you can specify those colors.

Modifying Graphic Attributes

— (NSColor *packgroundColor Returns the color of the background.
— (BOOL)YrawsBackground Returns whether the NSTextFieldCell draws its own
background.

— (void)setBackgroundColor(NSColor *)aColor Sets the color of the backgroundeiGolor.

— (void)setDrawsBackground(BOOL)flag Sets whether the NSTextFieldCell draws its own
background.
— (void)setTextColor:(NSColor *)aColor Sets the color of the text &Color.

— (id)setUpFieldEditorAttributes: (id)textObject Sets text attributes of the field editor to be the same as
those oftextObject Used to set the attributes of text
such as color and background color, for which there are
no explicit methods.

— (NSColor *YextColor Returns the color of the text.

OpenStep Specification—10/19/94 Classes: NSTextFieldCell-217

NSView

Inherits From: NSResponder : NSObject
Conforms To: NSCoding (NSResponder)

NSObject (NSObject)
Declared In: AppKit/NSView.h

AppKit/NSClipView.h

Class Description

NSView is an abstract class that provides its subclasses with a structure for drawing and for handling events. Any
application that needs to display, print, or receive events must use NSView objects.

To be displayed, a view must be placed in a window (represented by an NSWindow object). All the views within a

window are arranged in a hierarchy, with each view having a soglervienand zero or morgsubviewsEach

view has its own area to draw in and its own coordinate system, expressed as a transformation of its superview’s
coordinate system. An NSView object can scale, translate, or rotate its coordinates, or flip the polarity of its y-axis.

An NSView keeps track of its size and location in two ways: as a frame rectangle (expressed in its superview’s
coordinate system) and as a bounds rectangle (expressed in its own coordinate system). Both are represented by
NSRect structures.

Subclasses of NSView typically overrideawRect: to implement an object’s distinctive appearance. They also
frequently override one or more of NSView’s or NSResponder’s event-handling methods, to react to the user’s
manipulations of the mouse and keyboard.

Initializing NSView Objects
— (id)initWithFrame: (NSRectjrameRect Initializes a new NSView object to the location and

dimensions oframeRect

Managing the NSView Hierarchy

— (void)addSubview(NSView *)aView MakesaViewa subview of the receiving view object.

— (voidyaddSubview{NSView *)aView MakesaViewa subview of the receiving view object.
positioned:(NSWindowOrderingModejlace It is positioned relative totherViewaccording to
relativeTo: (NSView *)otherView place

1-218 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (NSView *JancestorSharedWithView(NSView *)aView
Returns the ancestor view sharedadjewand the
receiver;selfif aViewis the receiving view or if the
receiving view is the ancestora¥iew aViewif it is the
superview of the receiving view; ail in any other

case.
— (BOOL)isDescendantOffNSView *)aView Returns whethesViewis an ancestor of the receiver.
— (NSView *)opagueAncestor Returns the receiver’'s nearest opaque ancestor.
— (voidyemoveFromSuperview Removes the receiver from the view hierarchy.
— (voidyeplaceSubview(NSView *)oldView Replace®ldViewwith newView

with: (NSView *)newView

— (void)sortSubviewsUsingFunction(int (*)(id ,id ,void *))compare
context:(void *)context Sorts the receiving view's subviews using the sorting
functioncompareand the contextontext The first two
arguments of the function are the views to be compared.

— (NSArray *subviews Returns a mutable array of the receiving view object’s
subviews.

— (NSView *)superview Returns the receiving view object’s superview.

— (NSWindow *window Returns the window in which the view is displayed.

— (voidyviewWillMoveToWindow: (NSWindow *newWindow
Notifies the view that it will move to a new window

Modifying the Frame Rectangle

— (floatframeRotation Returns the angle of the frame rectangle’s rotation.
— (NSRectlrame Gets the view’s frame rectangle.
— (voidyotateByAngle:(floatyangle Rotates the view's frame rectangledngle. This method

posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

— (void)setFrame(NSRectjrameRect Assigns the view a new frame rectangle.

— (void)setFrameOrigin:(NSPointhewOrigin Sets the origin of the view’s frame tewOrigin This
method posts the NSViewFrameChangedNoatification
and NSViewFocusChangedNotification notifications
with the receiving object to the default notification
center.

OpenStep Specification—10/19/94 Classes: NSViewl-219

— (void)setFrameRotation(float}angle

— (void)setFrameSize(NSSizehewSize

Modifying the Coordinate System

— (floatpoundsRotation

— (NSRecthounds

— (BOOL)isFlipped

— (BOOL)sRotatedFromBase

— (BOOL)sRotatedOrScaledFromBase
— (void)scaleUnitSquareToSizeNSSizehewSize

— (void)setBounds(NSRectaRect
— (void)setBoundsOrigin:(NSPointhewOrigin

— (voidsetBoundsRotation(floatlangle

— (void)setBoundsSizgNSSizehewSize

— (void)YranslateOriginToPoint: (NSPointpoint

1-220 Chapter 1: Application Kit

Rotates the view’s frame tngle This method posts the
NSViewFocusChangedNotification notification with
the receiving object to the default notification center.

Resizes the view’s frame t@wSizeThis method posts the
NSViewFrameChangedNotification and
NSViewFocusChangedNotification notifications with
the receiving object to the default notification center.

Returns the rotation of the view’s coordinate system.
Gets the view’s bounds rectangle.

Returns whether the view is flipped.

Returns whether the view is rotated.

Returns whether the view is rotated or scaled.

Scales the NSView's coordinate system unit size to
newSizeThis method posts the notification
NSViewFocusChangedNoatification with the receiving
object to the default notification center.

Sets the NSView’s bounds rectangleai®ect

Sets the NSView's drawing origin tewOrigin This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

Rotates the NSView’s coordinate systenangle This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

Resizes the NSView'’s coordinate systemeaSizeThis
method posts the NSViewFocusChangedNoatification
notification with the receiving object to the default
notification center.

Shifts the NSView's coordinate systempmint This
method posts the NSViewFocusChangedNotification
notification with the receiving object to the default
notification center.

OpenStep Specification—10/19/94

Converting Coordinates

— (NSRectyenterScanRectfNSRectaRect Converts the rectangbRectto lie on centers of pixels.

— (NSPointyonvertPoint:(NSPointaPoint ConvertsaPointin aViewto the receiver’'s coordinates.
fromView: (NSView *)aView

— (NSPointgonvertPoint:(NSPointaPoint ConvertsaPointin the receiver taViews coordinates.
toView: (NSView *)aView

— (NSRectyonvertRect(NSRectaRect Converts the rectangbRectin aViewto the receiver’s
fromView: (NSView *)aView coordinates.

— (NSRectyonvertRect(NSRectaRect Converts the rectangiRectin the receiver taViews
toView: (NSView *)aView coordinates.

— (NSSizegonvertSize(NSSizeaSize ConvertsaSizein aViewto the receiver’s coordinates.

fromView: (NSView *)aView

— (NSSizegonvertSize(NSSizeaSize ConvertsaSizein the receiver taViews coordinates.
toView: (NSView *)aView

Notifying Ancestor Views

— (BOOL)YostsFrameChangedNotifications Returns whether notifications of frame changes to
ancestors are activated.

— (void)setPostsFrameChangedNotification$BOOL)flag
Sets whether to activate ancestor notifications.

Resizing Subviews

— (voidyesizeSubviewsWithOldSize(NSSizepldSize
InitiatessuperviewSizeChangedmessages to subviews.

— (void)setAutoresizesSubview$BOOL)flag Sets whether to notify subviews of resizing.

— (BOOL)autoresizesSubviews Returns whether the NSView notifies subviews of resizing.
— (voidsetAutoresizingMask(unsigned inthask ~ Determines automatic resizing behavior.

— (unsigned ingutoresizingMask Returns the NSView’s autosizing mask.

— (voidyesizeWithOldSuperviewSize(NSSizepldSize
Notifies subviews that the superview changed size.

OpenStep Specification—10/19/94 Classes: NSViewl-221

Graphics State Objects
— (voidjallocateGState
— (voidyeleaseGState
— (int)gState

— (voidyenewGState

— (voidsetUpGState

Focusing
+ (NSView *)focusView
— (void)JockFocus

— (voidunlockFocus

Displaying
— (BOOL)anDraw
— (voiddisplay
— (voiddisplaylfNeeded

— (void)isplaylfNeededIgnoringOpacity

— (voiddisplayRect(NSRectaRect

Allocates a graphics state object.
Release the NSView'’s graphics state object.
Returns the NSView’s graphics state object.

Marks the NSView's graphics state object as needing
initialization.

Sets up the NSView's graphics state object.

Returns the currently focused view.
Brings the receiving view into focus.

Unfocuses the receiving view.

Returns whether the view object can draw.
Displays the receiving view and its subviews.

Conditionally displays the receiving view and its subviews
(if opaque).

Conditionally displays the receiving view and its subviews,
regardless of opacity.

Displays the receiving view and its subviews (if opaque)
within aRect

— (voiddisplayRectlgnoringOpacity:(NSRectaRectDisplays the receiving view and its subviews (regardless of

— (void)rawRect:(NSRectject

— (NSRectyisibleRect

— (BOOL)sOpaque

— (BOOL)eedsDisplay

— (void)setNeedsDisplayBOOL)flag

1-222 Chapter 1: Application Kit

opacity) withinaRect
Implemented by subclasses to supply drawing instructions.
Gets the receiving view’s visible portion.
Returns whether the view is opaque.
Returns whether the view needs to be redisplayed.

If flagis YES, marks the view as changed, needing
redisplay.

OpenStep Specification—10/19/94

— (void)setNeedsDisplaylnRec{NSRect)nvalidRectMarks the view as changed, needing redisplay in rectangle

invalidRect
— (BOOL)shouldDrawColor Returns whether the view should be drawn in color.
Scrolling
— (NSRectadjustScroll:(NSRecthewVisible Lets the view object adjust the visible rectangle.
— (BOOL)autoscroll:(NSEvent *theEvent Scrolls in response to a mouse-dragged event.

— (voidyeflectScrolledClipView:(NSClipView *)aClipView
Reflects scrolling withirelip view aClipView.

— (void)scrollClipView: (NSClipView *)aClipView Scrolls the clip vievaClipViewto aPoint.
toPoint: (NSPointaPoint

— (void)scrollPoint: (NSPointaPoint Aligns aPointwith the content view’s origin.

— (void)scrollRect:(NSRectaRect Shifts the rectanglaRectby delta
by: (NSSizejlelta

— (BOOL)scrollRectToVisible:(NSRectaRect Scrolls the view so the rectangiRectis visible.

Managing the Cursor

— (voidyaddCursorRect:(NSRectaRect Adds a cursor rectangéRectfor cursoranObjectto the
cursor:(NSCursor *anObject NSView.

— (voiddiscardCursorRects Removes all cursor rectangles in the view.

— (voidyemoveCursorRect{NSRectaRect Removes cursor rectangi®ectfor cursoranObjectfrom
cursor:(NSCursor *anObject the view.

— (voidyesetCursorRects Implemented by subclasses to reset their cursor rectangles.

Assigning a Tag
— (int)tag Returns the view object’s tag.

— (id)viewWithTag: (int)aTag Returns the subview object widdTagas its tag.

Aiding Event Handling

— (BOOL)acceptsFirstMouse(NSEvent *jheEvent Returns whether the view object accepts first mouse-down

events.
— (NSView *hitTest: (NSPointaPoint Returns the lowest subview containing the pafPbint
— (BOOL)Mouse(NSPointaPoint Returns whether the poiaPointlies inside theRect

inRect:(NSRectaRect

OpenStep Specification—10/19/94 Classes: NSViewl-223

— (BOOL)YerformKeyEquivalent: (NSEvent *theEvent
Implemented by subclasses to perform key-equivalent
commands. Returns whether a subview handled
theEvent

- (void)removeTrackingRect(NSTrackingRectTagag
Removes the tracking rectangle identifiedidoyfrom the
view. (tag is an unique identifier returned from the
addTractingRect:owner:assumelnsidermethod.)

— (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *anEvent
Returns whether the view's window is brought forward
normally (mouse-down) or delayed (mouse-up).

— (NSTrackingRectTagddTrackingRect:(NSRectaRect

owner:(id)anObject Adds a tracking rectanglaRec} owned byanObjectto
userData:(void *)data the receiving NSView.
assumelnside(BOOL)flag flagindicates whether the tracking rectangle will be

only inside the NSView. Returns a unique tag that
identifies the tracking rectangle.

Dragging

— (BOOL)YragFile:(NSString *¥ilename Initiates a file-dragging session, dragging file indicated
fromRect: (NSRectject by pathfilenamerect describes the position of the icon
slideBack:(BOOL)slideFlag in the View's coordinateslideFlagdetermines
event(NSEvent *event whether the NSImage should slide back if rejected

— (voiddraglmage:(NSImage *animage Initiates an image-dragging session, draggingnage
at:(NSPointyiewLocation from viewLocationinitialOffsetis the difference in
offset:(NSSizejnitialOffset the mouse location from the mouse-down.
event:(NSEvent *gvent pboardis the pasteboard holding the data.
pasteboard{NSPasteboard ppoard sourceObjects the object receiving
source{id)sourceObject NSDraggingSource messagstideFlagdetermines
slideBack:(BOOL)slideFlag whether the NSImage should slide back if rejected.

— (voidyegisterForDraggedTypes(NSArray *)newTypes
Registers the pasteboard types that the window will accept
in an image-dragging session.

— (voidunregisterDraggedTypes Unregisters the window as a recipient of dragged images.

1-224 Chapter 1: Application Kit OpenStep Specification—10/19/94

Printing

— (NSData *fataWithEPSInsideRect{NSRectaRect

— (void)fax:(id)sender
— (void)print: (id)sender

— (voidwriteEPSInsideRect{NSRectject
toPasteboard(NSPasteboard pasteboard

Pagination

— (void)adjustPageHeightNew(float *)newBottom

top: (float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

— (voidladjustPageWidthNewf{float *)newRight
left: (float)oldLeft
right: (float)oldRight
limit: (float)rightLimit

— (floatheightAdjustLimit

— (BOOLXnowsPagesFirst{int *)firstPageNum
last:(int *)lastPageNum

— (NSPoint)ocationOfPrintRect: (NSRectaRect
— (NSRectlectForPage(int)page
— (floatwidthAdjustLimit

Writing Conforming PostScript
— (voidladdToPageSetup

— (voidbeginPagefint)ordinalNum
label:(NSString *\String
bBox:(NSRectpageRect
fonts:(NSString *fontNames

— (voidbeginPageSetupRecfNSRectaRect
placement{NSPointjocation

OpenStep Specification—10/19/94

Returns a data object initialized with the EPS data within
aRectin the receiving view.

Faxes the view and its subviews.
Prints the view and its subviews

Places PostScript code for the rectamgt# on the
pasteboard

Assists automatic pagination of the view object.

Assists automatic pagination of the view object.

Returns how much of a page can go on the next page.

Returns whether the view paginates itself.

Locates the printing rectangle on the page.
Provides how much of the view will print on page.

Returns how much of a page can go on the next page.

Allows you to adjust for differences in the graphics state
between the screen and the printer.

Writes a page separator.

Writes the beginning of a page setup section.

Classes: NSViewl-225

— (voidbeginPrologueBBox(NSRecthoundingBox Writes the header for a print job.
creationDate(NSString *)JateCreated
createdBy:(NSString *anApplication
fonts:(NSString *fontNames
forwhom: (NSString *luser
pages(int)ynumPages
title: (NSString *|Title

— (void)eginSetup Writes the beginning of the job setup section.
— (void)eginTrailer Writes the beginning of the trailer for the print job.

— (void)rawPageBorderWithSize(NSSizeporderSize
Implemented by subclasses to draw in margins (e.g.,
borders, numberinghorderSizés the size of the
border.

— (voiddrawSheetBorderWithSize(NSSizeporderSize
Implemented by subclasses to draw in margins (e.g.,
borders, numberinghorderSizés the size of the

border.
— (void)endHeaderComments Writes the end of the header.
— (void)endPrologue Writes the end of the prologue.
— (void)endSetup Writes the end of the job setup section.
— (void)endPageSetup Writes the end of a page setup section.
— (voidendPage Writes the end of a page.
— (void)endTrailer Writes the end of the trailer.

1-226 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSWindow

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSWindow.h

Class Description

The NSWindow class defines objects that manage and coordinate the windows that an application displays on the
screen. A single NSWindow object corresponds to, at most, one window. The two principle functions of an
NSWindow are to provide an area in which views can be placed, and to accept and distribute, to the appropriate
NSViews, events that the user instigates by manipulating the mouse and keyboard.

Rectangles, Views, and the View Hierarchy

An NSWindow is defined by fiame rectangleghat encloses the entire window, including its title bar, resize bar,

and border, and byantent rectangl¢éhat encloses just its content area. Both rectangles are specified in the screen
coordinate system. The frame rectangle establishes the NSWirths@'soordinate systerfhis coordinate

system is always aligned with and is measured in the same increments as the screen coordinate system (in other
words, the base coordinate system can't be rotated or scaled). The origin of a base coordinate system is the bottom
left corner of the window’s frame rectangle.

You create an NSWindow (through one of ithie... methods) by specifying, among other attributes, the size and
location of its content rectangle. The frame rectangle is derived from the dimensions of the content rectangle.

When it's created, an NSWindow automatically creates two NSViews: an offamqeeviewand a transparent

content vievthat fills the content area. The frame view is a private object that your application can’t access directly.
The content view is the “highest” accessible view in the window; you can replace the content view with an NSView
of your own creation through NSWindowsstContentView: method.

You add other views to the window by declaring each to be a subview of the content view, or a subview of one of
the content view’s subviews, and so on, through NSViedd&Subview: method. This tree of views is called the
window’s view hierarchyWhen an NSWindow is told to display itself, it does so by sending view-displaying
messages to each object in its view hierarchy. Because displaying is carried out in a determined order, the content
view (which is drawn first) may be wholly or partially obscured by its subviews, and these subviews may be
obscured by their subviews (and so on).

OpenStep Specification—10/19/94 Classes: NSWindowl-227

Event Handling

The window system and the NSApplication object forward mouse and keyboard events to the appropriate
NSWindow object. The NSWindow that’s currently designated to receive keyboard events is knowkegs the
window If the mouse or keyboard event affects the window directly—resizing or moving it, for example—the
NSWindow performs the appropriate operation itself and sends messages to its delegate informing it of its
intentions, thus allowing your application to intercede. Events that are directed at specific views within the window
are forwarded by the NSWindow to the NSView.

The NSWindow keeps track of the object that was last selected to handle keyboard evdirs essip@nderThe

first responder is typically the NSView that displays the current selection. In addition to keyboard events, the first
responder is sent action messages that have a user-selected tafgatdat in program code). The NSWindow
continually updates the first responder in response to the user's mouse actions.

Each NSWindow providesfald editor an NSText object that handles small-scale text-editing chores. The field
editor can be used by the NSWindow'’s first responder to edit the text that it displafisldEditor:forObject:
method returns the NSWindow’s field editor. (You can make this method instead return an alternative NSText
object, appropriate for the object specified the second argument, by implementing the delegate method
windowWillReturnFieldEditor:toObject: .)

Initializing and Getting a New NSWindow Object

— (id)initwithContentRect: (NSRectfontentRect Initializes the new window object with a location and

styleMask:(unsigned in@aStyle size for content ofontentRegta window style and

backing:(NSBackingStoreTypéufferingType buttons as indicated in the bitmap maStyle drawing

defer:(BOOL)flag buffering as indicated byufferingTypelf flagis YES,
the window system defers creating the window until it's
needed.

— (id)initwithContentRect: (NSRectgontentRect Initializes the new window object for a screen as specified

styleMask:(unsigned inaStyle by aScreenwith a location and size for content of
backing:(NSBackingStore TypéufferingType contentRea window style and buttons as indicated in
defer:(BOOL)flag the bitmap maskStyle drawing buffering as indicated
screen(NSScreen ®Screen by bufferingTypelf flagis YES,the window system

defers creating the window until it's needed.

Computing Frame and Content Rectangles

+ (NSRectgontentRectForFrameRect(NSRectaRect
styleMask:(unsigned in@aStyle Gets the content rectangle for frame rectaagiectin a
window of typeaStyle

+ (NSRectframeRectForContentRect{NSRectaRect
styleMask:(unsigned inaStyle Gets the frame rectangle for content rectaaglectin a
window of typeaStyle

1-228 Chapter 1: Application Kit OpenStep Specification—10/19/94

+ (floatminFrameWidthWithTitle: (NSString *aTitle
styleMask:(unsigned in@Style Returns the minimum frame width neededdditle in a
window of typeaStyle

Accessing the Content View

— (id)contentView Returns the NSWindow’s content view.

— (void)setContentView{NSView *)aView MakesaViewthe NSWindow’s content view.
Window Graphics

— (NSCaolor *packgroundColor Returns the window’s background color.

— (NSString *yepresentedFilename Returns the filename associated with this window

(regardless of the title string).
— (void)setBackgroundColor(NSColor *)color Sets the window’s background coloraolor.

— (voidsetRepresentedFilenaméNSString *aString
AltersaStringby formatting it as a path and filename, then
sets the filename associated with this window to the
result. Iffilenamedoesn’t include a path to the file, the
current working directory is used. This method doesn't
affect the title string.

— (void)setTitle:(NSString *\aString MakesaStringthe window's title.

— (void)setTitleWithRepresentedFilename(NSString *aString
InvokessetRepresentedFilenameand makes the
resultant string the window’s title.

— (unsigned ingtyleMask Returns the window’s border and title-bar style.

— (NSString *jitle Returns the window’s title string.

Window Device Attributes

— (NSBackingStoreTypbackingType Returns the type of the window device’s backing store.

— (NSDictionary *fleviceDescription Returns the window device’s attributes as key/value pairs.
— (int)gState Returns the graphics-state object for the window object.
— (BOOL)sOneShot Returns whether backing-store memory for the window is

freed when the window is ordered off-screen.

— (voidsetBackingType(NSBackingStoreTyp#ype Sets the type of window-device backing store.

OpenStep Specification—10/19/94 Classes: NSWindowl-229

— (void)setOneShot{(BOOL)flag

— (int)windowNumber

The Miniwindow
— (NSImage *niniwindowlmage
— (NSString *)miniwindowTitle
— (voidsetMiniwindowlmage:(NSImage *)mage

— (voidsetMiniwindowTitle: (NSString *Yitle

The Field Editor
— (void)endEditingFor: (id)anObject

— (NSText *¥ieldEditor: (BOOL)createFlag
forObject: (id)anObject

Window Status and Ordering

— (voidbecomeKeyWindow

— (voidbecomeMainWindow

— (BOOL)canBecomeKeyWindow

— (BOOL)anBecomeMainWindow

— (BOOL)idesOnDeactivate
— (BOOL)isKeyWindow

— (BOOL)sMainWindow

1-230 Chapter 1: Application Kit

Sets whether backing-store memory for the window should
be freed when the window is ordered off-screen.

Returns the window number.

Returns the image that’s displayed in the miniwindow.
Returns the title that's displayed in the miniwindow.
Sets thémagethat's displayed in the miniwindow.

Sets thditle that’s displayed in the miniwindow.

Ends the field editor’s editing assignmentdoObject

Returns the window object’s field editor fanObject
If the field editor does not exist aockbateFlagis YES,
creates a field editor.

Records the window’s new status as the key window. This
method posts the notification
NSWindowDidBecomeKeyNoatification with the
receiving object to the default notification center.

Records the window’s new status as the main window. This
method posts the notification
NSWindowDidBecomeMainNotification with the
receiving object to the default notification center.

Returns whether the receiving window object can be the
key window.

Returns whether the receiving window object can be the
main window.

Returns whether deactivation hides the window.

Returns whether the receiving window object is the key
window.

Returns whether the receiving window object is the main
window.

OpenStep Specification—10/19/94

— (BOOL)sMiniaturized

— (BOOL)sVisible

— (int)level

— (voidymakeKeyAndOrderFront: (id)sender

— (void)makeKeyWindow

— (voidymakeMainWindow

— (void)orderBack:(id)sender
— (void)orderFront: (id)sender

— (void)orderFrontRegardless

— (void)orderOut: (id)sender

Returns whether the window is hidden (and the
miniwindow displayed).

Returns whether the window object is in the screen list (and
thus visible).

Returns the current window level.

Makes the receiving window object the key window and
brings it forward.

Makes the receiving window object the key window.
Makes the receiving window object the main window.
Puts the window object at the back of its tier.

Puts the window object at the front of its tier.

Puts the window object at the front even if the application
is inactive. If the window is currently miniaturized, this
method posts the notification
NSWindowDidDeminiaturizeNotification with the
window object to the default notification center.

Removes the window object from the screen list.

— (void)orderWindow: (NSWindowOrderingModglace

relativeTo: (int)otherWin

— (voidyesignKeyWindow

— (voidyesignMainWindow

— (void)setHidesOnDeactivate(BOOL)flag

— (void)setLevel(int)newLevel

OpenStep Specification—10/19/94

Repositions the window object in the screen list in position
placerelative to another window. If the window is
currently miniaturized, this method posts the
NSWindowDidDeminiaturizeNotification notification
with that window object to the default notification
center.

Records that the window object is no longer the key
window. This method posts the notification
NSWindowDidResignKeyNatification with the
receiving object to the default notification center.

Records that the window object is no longer the main
window. This method posts the notification
NSWindowDidResignMainNotification with the
receiving object to the default notification center.

Sets whether deactivation hides the window.

Resets the window level tewLevel

Classes: NSWindowl-231

Moving and Resizing the Window

— (NSPointyascadeTopLeftFromPoint(NSPointjopLeftPoint
When successively invoked, tiles windows by offsetting
them slightly to the right and down from the previous
window. Returns the top left point of the placed
window, which is typically used faopLeftPointin the
next invocation. If you specify (0,0), places the window
as is, and returns its top left point.

— (void)center Centers the window on the screen.

— (NSRectyonstrainFrameRect(NSRectjrameRect
toScreen(NSScreen *creen Constrains the window’s frame rectanfji@meRecto
screen Returns the frame rectangle.

— (NSRectirame Returns the window’s frame rectangle

— (NSSizeninSize Returns the window’s minimum size.

— (NSSizenaxSize Returns the window’s maximum size

— (void)setContentSize{NSSizeaSize Resizes the window’s content areatize.

— (void)setFrame(NSRectjrameRect Moves and/or resizes the window framdrtomeRectflag
display:(BOOL)flag determines whether the window is displayed. This

method posts the NSWindowDidResizeNotification
notification with the receiving object to the default
notification center.

— (void)setFrameOrigin:(NSPointaPoint Moves the window by changing its frame origiraféoint

— (void)setFrameTopLeftPoint:(NSPointpPoint Moves the window by changing its top-left corner to
aPoint

— (voidsetMinSize(NSSizenSize Sets the window’s minimum size.

— (voidsetMaxSize(NSSizeaSize Sets the window’s maximum size.

Converting Coordinates

— (NSPointyonvertBaseToScreer{NSPointaPoint
ConvertsaPointfrom base to screen coordinates.

— (NSPointgonvertScreenToBaséNSPointaPoint
ConvertsaPointfrom screen to base coordinates.

1-232 Chapter 1: Application Kit OpenStep Specification—10/19/94

Managing the Display

— (voiddisplay

— (void)isableFlushWindow
— (voiddisplaylfNeeded

— (void)enableFlushWindow
— (void¥lushwindow

— (void¥lushwindowlfNeeded
— (BOOL)isAutodisplay

— (BOOL)isFlushWindowDisabled
— (void)setAutodisplay:(BOOL)flag

— (void)setViewsNeedDisplayBOOL)flag

— (voidupdate

— (voiduseOptimizedDrawing:(BOOL)flag
— (BOOL)viewsNeedDisplay

Screens and Window Depths

+ (NSWindowDepthjefaultDepthLimit
— (BOOL)canStoreColor

— (NSScreen JeepestScreen

— (NSWindowDepthjepthLimit

— (BOOL)hasDynamicDepthLimit

— (NSScreen creen

— (void)setDepthLimit: (NSWindowDepthlmit

— (void)setDynamicDepthLimit:(BOOL)flag

OpenStep Specification—10/19/94

Displays all the window’s views.

Disables flushing for a buffered window.

Displays all the window’s views that need to be redrawn.
Enables flushing for a buffered window.

Flushes the window’s buffer to the screen.

Conditionally flushes the window’s buffer to the screen.

Returns whether the window displays all views requiring
redrawing whempdate is invoked.

Returns whether flushing is disabled.

Sets whether the window displays all views requiring
redrawing whempdate is invoked

Sets whether some views of the receiving window object
should be redrawn.

Update’s the window’s display and cursor rectangles. This
method is invoked after every event. When it
successfully completes, it posts the
NSWindowDidUpdateNotification notification.

Sets whether the window’s views should optimize drawing.

Returns whether some views of the receiving NSWindow
object should be redrawn.

Returns the default depth limit for all windows.

Returns whether the window is deep enough to store colors.
Returns the deepest screen that the window is on.
Returns the window’s depth limit.

Returns whether the depth limit depends on the screen.
Returns the screen that (most of) the window is on.

Sets the window’s depth limit tomit

Sets whether the depth limit will depend on the screen.

Classes: NSWindowl-233

Cursor Management
— (BOOL)areCursorRectsEnabled
— (void)isableCursorRects
— (voiddiscardCursorRects

— (void)enableCursorRects

Returns whether cursor rectangles are enabled.
Disables all cursor rectangles in the window object.
Removes all cursor rectangles in the window object.

Enables cursor rectangles in the window object.

— (void)nvalidateCursorRectsForView:(NSView *)aView

— (voidyesetCursorRects

Handling User Actions and Events

— (void)close

— (voideminiaturize:(id)sender
— (BOOL)sDocumentEdited
— (BOOL)sReleasedWhenClosed

— (void)miniaturize: (id)sender

— (void)performClose:(id)sender

— (voidyerformMiniaturize: (id)sender

— (intyresizeFlags

— (void)setDocumentEdited(BOOL)flag

— (voidsetReleasedWhenClose(BOOL)flag

Aiding Event Handling
— (BOOL)acceptsMouseMovedEvents

— (NSEvent *urrentEvent

1-234 Chapter 1: Application Kit

Marks cursor rectangles invalid fakiew

Resets cursor rectangles for the window object.

Closes the window. When this method begins, it posts the
notification NSWindowWillCloseNotification with the
receiving object to the default notification center.

Hides the miniwindow and redisplays the window.
Returns whether the window’s document has been edited.

Returns whether the window object is released when it is
closed.

Hides the window and displays its miniwindow. When this
method begins, it posts the notification
NSWindowWillMiniaturizeNotification with the
receiving object to the default notification center. When
it completes successfully, it posts
NSWindowDidMiniaturizeNotification.

Simulates user clicking the close button.

Simulates user clicking the miniaturize button.

Returns the event modifier flags during resizing.

Sets whether the window’s document has been edited.

Sets whether closing the window object also releases it.

Returns whether the NSWindow accepts mouse-moved
events.

Returns the current event object for the application.

OpenStep Specification—10/19/94

— (voiddiscardEventsMatchingMask:(unsigned inthask
beforeEvent(NSEvent *JastEvent Discards any events in the event queue that have a type
indicated by bitmapnaskuntil the method encounters
the eventastEvent

— (NSResponder fiystResponder Returns the first responder to user events.
— (voidkeyDown:(NSEvent *fheEvent Handles key-down events.

— (BOOL)makeFirstResponder(NSResponder ‘gResponder
MakesaRespondethe first responder to user events.

— (NSPointinouseLocationOutsideOfEventStream Provides current location of the cursor.

— (NSEvent *hextEventMatchingMask:(unsigned inthask
Returns the next event object for the application that
matches the events indicated by event nmagkk

— (NSEvent *hextEventMatchingMask:(unsigned inthask

untilDate: (NSDate *gexpiration Returns the next event object for the application that
inMode: (NSString *mode matches the events indicated by event nmaa&k and
dequeue(BOOL)deqgFlag that occurs before timexpiratiorn until expiration the

run loop runs ilmode

— (void)postEvent(NSEvent *pvent
atStart: (BOOL)flag Post areventfor the application; iatStartis YES, the
event goes to the beginning of the event queue.

— (void)setAcceptsMouseMovedEvent$BOOL)flag
Sets whether the NSWindow accepts mouse-moved events.

— (voidsendEvent(NSEvent *}heEvent Dispatches mouse and keyboard events. If this method is
dispatching a window exposed event, it posts the
NSWindowDidExposeNoatification notification with the
receiving object and, in the notification’s dictionary, a
rectangle describing the exposed area (with the key
NSExposedRect) to the default notification center. If it
is dispatching a screen changed event, it posts
NSWindowDidChangeScreenNotification with the
receiving object. If it is dispatching a window moved
event, it posts NSWindowDidMoveNotification.

— (BOOL)ryToPerform: (SEL)anAction Aids in dispatching action messagasActior) to
with: (id)anObject anObject
— (BOOLworksWhenModal Override to return whether the window object accepts

events when a modal panel is being run. Default is NO.

OpenStep Specification—10/19/94 Classes: NSWindowl-235

Dragging

— (voiddraglmage:(NSImage *animage Initiates an image-dragging session. NSView invokes this
at:(NSPointpaseLocation method inside its implementation mbuseDown:
offset:(NSSizejnitialOffset

event(NSEvent *pvent
pasteboard{NSPasteboard ppoard
source{id)sourceObject
slideBack:(BOOL)slideFlag

— (voidyegisterForDraggedTypes(NSArray *)newTypes
Registers the NSPasteboard typesiTypesthat the
window object accepts in an image-dragging session.

— (voidunregisterDraggedTypes Unregisters the window object as a recipient of dragged
images.

Services and Windows Menu Support

— (BOOL)sExcludedFromWindowsMenu Returns whether the receiving window object is omitted
from the Windows menu.

— (voidsetExcludedFromWindowsMenu(BOOL)flag
Sets whether the receiving window object is omitted from
the Windows menu.

— (id)validRequestorForSendType(NSString *sendType
returnType: (NSString *yeturnType Returns whether the window can respond to a service with
send and receive typesndTypandreturnType

Saving and Restoring the Frame

+ (void)removeFrameUsingNamegNSString *name
Removes the named frame rectangle from the system
defaults.

— (NSString *frameAutosaveName Returns the name that’s used to autosave the frame
rectangle as a system default.

— (voidsaveFrameUsingNamgNSString *name Saves the frame rectangle as a system default.

— (BOOLsetFrameAutosaveNamgNSString *nhame
Sets thenamethat's used to autosave the frame rectangle as
a system default.

— (void)setFrameFromString:(NSString *)string Sets the frame rectangle frastring, which encodes the
position and dimensions of the frame rectangle and the
position and dimensions of the screen.

1-236 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (BOOLsetFrameUsingNamgNSString *name Sets the frame rectangle from the named default.

— (NSString *ptringWithSavedFrame Returns a string encoding the position and dimensions of
the frame rectangle and the position and dimensions of
the screen.

Printing and PostScript

— (NSData *ataWithEPSInsideRect{NSRectject Returns the encapsulated PostScript insedeas a data

object.

— (void)fax:(id)sender Faxes all the window’s views.

— (void)print: (id)sender Prints all the window's views.
Assigning a Delegate

— (id)delegate Returns the window object’s delegate.

— (voidsetDelegategiid)anObject MakesanObjectthe window object’s delegate.
Implemented by the Delegate

— (BOOL)windowShouldClose(id)sender Notifies delegate that the window is about to close.

— (NSSizeyvindowWillResize:(NSWindow *)sender

toSize(NSSizejrameSize Lets delegate constrain resizingfitameSize

— (id)windowWillReturnFieldEditor: (NSWindow *)sender
toObject:(id)client Lets delegate provide another text object for field editor.

— (voidwindowDidBecomeKey(NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window is the key windoaNotificationis
always NSWindowDidBecomeKeyNoatification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (voidwindowDidBecomeMain:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window is the main windoaMNotificationis
always NSWindowDidBecomeMainNatification. If the
delegate implements this method, it's automatically
registered to receive this notification.

OpenStep Specification—10/19/94 Classes: NSWindowl-237

— (voidwindowDidChangeScreen(NSNoatification *)aNotification
Sent by the default naotification center to notify the delegate
that the window changed screeablotificationis
always NSWindowDidChangeScreenNotification. If
the delegate implements this method, it's automatically
registered to receive this notification.

— (voidwindowDidDeminiaturize: (NSNotification *aNotification
Sent by the default notification center to notify the delegate
that the window was restored to scresotificationis
always NSWindowDidDeminiaturizeNotification. If
the delegate implements this method, it's automatically
registered to receive this notification.

— (voidwindowDidExpose(NSNatification *)aNotification
Sent by the default notification center to notify the delegate
that the window was exposeaiNotificationis always
NSWindowDidExposeNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (voidwindowDidMiniaturize: (NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window was miniaturizedNotificationis
always NSWindowDidMiniaturizeNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (voidwindowDidMove:(NSNotification *aNotification
Sent by the default notification center to notify the delegate
that the window did moveNotificationis always
NSWindowDidMoveNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (voidwindowDidResignKey:(NSNotification *)aNotification
Sent by the default notification center to notify the delegate
that the window isn't the key windowaNoatificationis
always NSWindowDidResignKeyNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (voidwindowDidResignMain:(NSNotification *aNotification
Sent by the default notification center to notify the delegate
that the window isn’t the main windoaMNotificationis
always NSWindowDidResignMainNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

1-238 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (voidwindowDidResize(NSNotification *aNotification

Sent by the default naotification center to notify the delegate

that the window was resizedNotificationis always
NSWindowDidResizeNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (voidwindowDidUpdate:(NSNotification *)aNotification

Sent by the default notification center to notify the delegate

that the window was updatealNotificationis always
NSWindowDidUpdateNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (voidwindowWillClose: (NSNatification *)aNotification

Sent by the default notification center to notify the delegate

that the window will closeaNatificationis always
NSWindowWillCloseNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

— (voidwindowWillMiniaturize: (NSNotification *aNotification

Sent by the default notification center to notify the delegate

that the window will be miniaturize@Notificationis
always NSWindowWillMiniaturizeNotification. If the
delegate implements this method, it's automatically
registered to receive this notification.

— (voidwindowWillMove: (NSNotification *)aNotification

OpenStep Specification—10/19/94

Sent by the default notification center to notify the delegate

that the window will moveaNotificationis always
NSWindowWillMoveNotification. If the delegate
implements this method, it's automatically registered to
receive this notification.

Classes: NSWindowl-239

NSWorkspace

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSWorkspace.h

Class Description

An NSWorkspace object responds to application requests to perform a variety of services:

« Opening, manipulating, and obtaining information about files and devices

» Tracking changes to the file system, devices, and the user database

» Launching applications

» Miscellaneous services such as animating an image and requesting additional time before power off

An NSWorkspace object is made available throughsttzedWorkspacemethod. For example, the following
statement uses an NSWorkspace object to request that a file be opened in the Edit application:

[[INSWorkspace sharedWorkspace] openFile:@"/Myfiless/README" withApplication: @"Edit"];

Creating a Workspace

+ (NSWorkspace gharedWorkspace

Opening Files
— (BOOL)openFile(NSString *fullPath

— (BOOL)openFile(NSString *fullPath
fromimage:(NSImage *animage
at:(NSPointpoint
inView: (NSView *)aView

1-240 Chapter 1: Application Kit

Returns a shared workspace.

Instructs Workspace Manager to open the file specified by
fullPath using the default application for its type;
returns YES if file was successfully opened and NO
otherwise.

Instructs Workspace Manager to open the file specified by
fullPattusing the default application for its type. To
provide animation prior to the opeamimageshould
contain the file’s icon, and its image should be displayed
atpoint, usingaViews coordinates. Returns YES if file
was successfully opened and NO otherwise.

OpensStep Specification—10/19/94

— (BOOL)openFile:(NSString *fullPath Instructs Workspace Manager to open the file specified by
withApplication: (NSString *appName fullPatlusing theappNameapplication; returns YES if
file was successfully opened and NO otherwise.

— (BOOL)openFile:(NSString *fullPath Instructs Workspace Manager to open the file specified by
withApplication: (NSString *appName fullPatlusing theappNameapplication wherdag
andDeactivate(BOOL)flag indicates if sending application should be deactivated

before the request is sent; returns YES if file was
successfully opened and NO otherwise.

— (BOOL)openTempFile(NSString *fullPath Instructs Workspace Manager to open the temporary file
specified byullPath using the default application for its
type; returns YES if file was successfully opened and
NO otherwise.

Manipulating Files

— (BOOL)performFileOperation: (NSString *pperation

source(NSString *source Requests the Workspace Manager to perform a file
destination:(NSString *)destination operatiomn a set ofilesin thesourcedirectory
files:(NSArray *)files specifying thedestinationdirectory if needed usinigg
tag:(int *)tag as an identifier for asynchronous operations; returns

YES if operation succeeded and NO otherwise.

— (BOOL)selectFile(NSString *fullPath
inFileViewerRootedAtPath:(NSString *yootFullpath
Instructs Workspace Manager to select the file specified by
fullPath opening a new file viewer if a path is specified
by rootFullpath returns YES if file was successfully
selected and NO otherwise.

Requesting Information about Files

— (NSString *jullPathForApplication: (NSString *appName
Returns the full path for the applicatiappName

— (BOOL)getFileSystemInfoForPath(NSString *¥ullPath

isRemovable(BOOL *)removableFlag Describes the file systemfatlPath in descriptionand
isWritable: (BOOL *)writableFlag fileSystemTypeets thé-lagsappropriately, and returns
isUnmountable:(BOOL *)unmountableFlag YES if fullPathis a file system mount point, or NO if it
description:(NSString **)description isn't.

type:(NSString **¥ileSystemType

OpenStep Specification—10/19/94 Classes: NSWorkspade241

— (BOOL)getInfoForFile: (NSString *fullPath Retrieves information about the file specifiedfilyPath,
application: (NSString **)appName setsappNameo the application the Workspace
type:(NSString **)type Manager would use to opéullPath,setstypeto a value

or file name extension indicating the file’s type, and
returns YES upon success and NO otherwise.

— (NSlImage *)conForFile:(NSString *fullPath Returns an NSImage with the icon for the single file
specified byfullPath.

- (NSImage *)conForFiles:(NSArray *)pathArray Returns an NSimage with the icon for the files specified in
pathArray an array of NSStrings. plathArrayspecifies
one file, its icon is returned.piithArrayspecifies more
than one file, an icon representing the multiple selection
is returned.

— (NSImage *iconForFileType:(NSString *¥ileType Returns an NSImage the icon for the file type specified by
fileType

Tracking Changes to the File System

— (BOOLYileSystemChanged Returns whether a change to the file system has been
registered with aoteFileSystemChangednessage
since the lasfileSystemChangedmessage.

— (void)noteFileSystemChanged Informs Workspace Manager that the file system has
changed.

Updating Registered Services and File Types

— (void¥indApplications Instructs Workspace Manager to examine all applications
in the normal places and update its records of registered
services and file types.

Launching and Manipulating Applications
— (voidhideOtherApplications Hides all applications other than the sender.

— (BOOL)aunchApplication: (NSString *appName Instructs Workspace Manager to launch the application
appNameand returns YES if application was
successfully launched and NO otherwise.

— (BOOL)aunchApplication: (NSString *appName Instructs Workspace Manager to launch the application
showlcon(BOOL)showlcon appNamedisplaying the application’s iconshowlcon
autolaunch:(BOOL)autolaunch is YES and using the dock autolaunching defaults if

autolaunchis YES; returns YES if application was
successfully launched and NO otherwise.

1-242 Chapter 1: Application Kit OpensStep Specification—10/19/94

Unmounting a Device

— (BOOLunmountAndEjectDeviceAtPath:(NSString *path

Tracking Status Changes for Devices

— (voidxheckForRemovableMedia

— (NSArray *mountNewRemovableMedia

— (NSArray *mountedRemovableMedia

Notification Center

— (NSNotificationCenter fjotificationCenter

Tracking Changes to the User Defaults Database

— (void)noteUserDefaultsChanged

— (BOOL)userDefaultsChanged

Animating an Image

— (voidslidelImage(NSImage *)mage
from: (NSPointjromPoint
to: (NSPointjoPoint

OpenStep Specification—10/19/94

Unmounts and ejects the devicgoathand returns YES if
unmount succeeded and NO otherwise.

Causes the Workspace Manager to poll the system’s drives
for any disks that have been inserted but not yet
mounted. Asks the Workspace Manager to mount the
disk asynchronously and returns immediately.

Causes the Workspace Manager to poll the system’s drives
for any disks that have been inserted but not yet
mounted, waits until the new disks have been mounted,
and returns a list of full pathnames to all newly mounted
disks.

Returns a list of the pathnames of all currently mounted
removable disks.

Returns the notification center for WorkSpace
notifications.

Informs Workspace Manager that the defaults database has
changed.

Returns whether a change to the defaults database has been
registered with aoteUserDefaultsChangednessage
since the lasiserDefaultsChangedmessage.

Instructs Workspace Manager to animate a sliding image of
imagdrom fromPointto toPoint specified in screen
coordinates.

Classes: NSWorkspade243

Requesting Additional Time before Power Off or Logout

— (int)extendPowerOffBy(int)requested Requests more time before the power goes off or the user
logs out; returns the granted number of additional
milliseconds.

1-244 Chapter 1: Application Kit OpensStep Specification—10/19/94

Protocols

NSChangeSpelling

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

An object in the responder chain that can correct a misspelled word implements this protocol. See the description
of theNSSpellChecker clagsr more information.

Changing Spelling

— (voidxhangeSpelling(id)sender Implement to replace the selected word in the receiver with
a corrected version from the Spelling panel. This
message is sent by the NSSpellChecker instance to the
object whose text is being checked. To get the corrected
spelling, the receiver asks the sender for the string value
of its selected cell.

OpenStep Specification—10/19/94 Protocols: NSChangeSpelliny245

NSColorPickingCustom

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

Together with the NSColorPickingDefault protocol, NSColorPickingCustom provides a way to add color pickers—
custom user interfaces for color selection—to an application's NSColorPanel. The NSColorPickingDefault

protocol provides basic behavior for a color picker. The NSColorPicker class adopts the NSColorPickingDefault
protocol. The easiest way to implement a color picker is to create a subclass of NSColorPicker and use it as a base
upon which to add the NSColorPickingCustom protocol.

See also: NSColorPickingDefault, NSColorPicker (class)

Getting the Mode

— (intcurrentMode Returns the color picker’'s current mode (or submode, if
applicable). The returned value should be unique to
your color picker.l{SColorPanel.h defines unique
values for the standard color pickers used by the
Application Kit.)

— (BOOL)supportsMode:(intymode Returns YES if the receiver supports the specified picking
mode.

Getting the View

— (NSView *)provideNewView:(BOOL)firstRequest Returns the view containing the color picker’s user
interface. This message is sent to the color picker
whenever the color panel attempts to display it; the
argument indicates whether this is the first time the
message has been senfirftRequesis YES, the
method should perform any initialization required (such
as lazily loading a nib file).

Setting the Current Color

— (void)setColor:(NSColor *aColor Adjusts the color picker to makeColor the currently
selected color.

1-246 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSColorPickingDefault

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides an interface for
adding color pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSColorPickingCustom protocol
provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement your

own color picker is to create a subclass of NSColorPicker, implementing the NSColorPickingCustom protocol in

that subclass. However, it's possible to create a subclass of another class, such as NSView, and use it as a base upon
which to add the methods of both NSColorPickingDefault and NSColorPickingCustom.

Color Picker Bundles

A class that implements the NSColorPickingDefault and NSColorPickingCustom protocols needs to be compiled
and linked in an application’s object file. However, your application need not explicitly create an instance of this
class. Instead, your application’s file package should include a directory GaoeBickers; within this directory

you should place a directoMyPickerClasdundle for each custom color picker your application implements.

This bundle should contain all resources required for your color picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a bundle is four@idlotRéckers
directory. The class name is assumed to be the bundle directory name mibusdheextension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from a matrix of NSButtonCells. This protocol includes methods
for providing and manipulating the image that gets displayed on the button.

See also: NSColorPickingCustom, NSColorPicker (class), NSColorPanel (class)

OpenStep Specification—10/19/94 Protocols: NSColorPickingDefault-247

Initializing a Color Picker

— (id)initwithPickerMask: (int)mask Initializes the receiver for the specified mask and color
colorPanel(NSColorPanel ®olorPanel panel. This method is sent by the NSColorPanel to all

implementors of the color picking protocols when the
application’s color panel is first initialized. If the color
picker responds to any of the modes represented in
mask it should perform its initialization (if desired) and
returnself, otherwise it should do nothing and return
nil. However, a custom color picker can instead delay
initialization until it receives grovideNewView:
message.

Adding Button Images

— (void)insertNewButtonimage:(NSImage *hewlmage
in: (NSButtonCell *newButtonCell SetsnewlmageasnewButtonCels image.newButtonCell
is the NSButtonCell object that lets the user choose the
picker from the color panel. This method should
perform application-specific manipulation of the image
before it’s inserted and displayed by the button cell.

— (NSImage *provideNewButtonImage Returns the image for the mode button that the user uses to
select this picker in the color panel. (This is the same
image that the color panel uses as an argument when
sending thénsertNewButtonimage:in: message.)

Setting the Mode

— (void)setMode{int)ymode Sets the color picker's mode. This method is invoked by
NSColorPanel'setMode: method to ensure that the
color picker reflects the current mode. Most color
pickers have only one mode, and thus don't need to do
any work in this method. Others, like the standard
sliders picker, have multiple modes.

Using Color Lists

— (voidjattachColorList: (NSColorList *JaColorList Attaches the given color list to the receiver, if it isn't
already displaying the list. This method is invoked
automatically by the NSColorPanel when its
attachColorList: method is invoked. Since
NSColorPanel's list mode manages NSColorLists, this
method need only be implemented by a custom color
picker that manages NSColorLists itself.

1-248 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (void)yetachColorList:(NSColorList *)aColorList Removes the given color list from the receiver, unless the
receiver isn’t displaying the list. This method is invoked
automatically by the NSColorPanel when its
detachColorList: method is invoked. Since
NSColorPanel's list mode manages NSColorLists, this
method need only be implemented by a custom color
picker that manages NSColorLists itself.

Showing Opacity Controls

— (voidlalphaControlAddedOrRemoved:(id)sender Sent by the color panethen the opacity controls have been
hidden or displayed. If the color pickieas its own
opacity controls, it should hide or display them,
depending on whether the sendsti®wsAlpha
method returns NO or YES.

Responding to a Resized View

— (voidviewSizeChangedid)sender Sent when the color picker’s superview has been resized in
a way that might affect the color pickeenderis the
NSColorPanel that contains the color picker.

OpenStep Specification—10/19/94 Protocols: NSColorPickingDefault-249

NSDraggingDestination

(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingDestination protocol declares methods that the destination (or recipient) of a dragged image must
implement. The destination automatically receives NSDraggingDestination messages as an image enters, moves
around inside, and then exits or is released within the destination’s boundaries.

Note: In the text here and in the other dragging protocol descriptions, theltagging sessiors the entire

process during which an image is selected, dragged, released, and is absorbed or rejected by the destination. A
dragging operations the action that the destination takes in absorbing the image when it’s releasrdggive

sourceis the object that “owns” the image that's being dragged. It's specified as an argumedtaglthage:...
message, sent to a NSWindow or NSView, that instigated the dragging session.

The Dragged Image

The image that's dragged in an image-dragging session is an NSImage object that represents data that's put on the
pasteboard. Although a dragging destination can access the NSIimage (through a method described in the
NSDragginglnfo protocol), its primary concern is with the pasteboard data that the NSimage represents—the
dragging operation that a destination ultimately performs is on the pasteboard data, not on the image itself.

Valid Destinations

Dragging is a visual phenomenon. To be an image-dragging destination, an object must represent a portion of
screen real estate; thus, only NSWindows and NSViews can be destinations. Furthermore, you must announce the
destination-candidacy of an NSWindow or NSView by sendingagesterForDraggedTypes:message. This

method, defined in both classes, registers the pasteboard types that the object will accept. During a dragging
session, a candidate destination will only receive NSDraggingDestination messages if the pasteboard types for
which it is registered matches a type that's represented by the image that’s being dragged.

Although NSDraggingDestination is declared as a protocol, the NSView and NSWindow subclasses that you create
to adopt the protocol need only implement those methods that are pertinent. (The NSView and NSWindow classes
provide private implementations for all of the methods.) In addition, an NSWindow or its delegate may implement
these methods; the delegate’s implementation takes precedent.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argusaedérthe object that invoked the method.
Within its implementations of the NSDraggingDestination methods, the destination can send NSDragginginfo
messages teenderto get more information on the current dragging session.

1-250 Chapter 1: Application Kit OpensStep Specification—10/19/94

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

As the image is dragged into the destination’s boundaries, the destination isisggiagEntered:
message.

While the image remains within the destination, a seriglsarfgingUpdated: messages are sent.

If the image is dragged out of the destinatinaggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

When the image is released, it either slides back to its source (and breaks the sequence) or a
prepareForDragOperation: message is sent to the destination, depending on the value that was returned
by the most recent invocation dfaggingEntered: or draggingUpdated..

If the prepareForDragOperation: message returned YESparformDragOperation: message is sent.

Finally, if performDragOperation: returned YES¢oncludeDragOperation:is sent.

Before the Image is Released

— (NSDragOperatiomyraggingEntered:(id <NSDragginglnfo>3ender

Invoked when the dragged image enters the destination.

— (NSDragOperatiomyraggingUpdated:(id <NSDraggingInfo>3ender

Invoked periodically while the image is over the
destination.

— (void)draggingExited:(id <NSDraggingInfo>3ender

Invoked when the dragged image exits the destination.

After the Image is Released

— (BOOL)prepareForDragOperation:(id <NSDraggingIinfo>3ender

Invoked when the image is released.

— (BOOL)erformDragOperation: (id <NSDraggingInfo>3ender

Gives the destination an opportunity to perform the
dragging operation.

— (void)concludeDragOperation(id <NSDragginginfo>3ender

Invoked when the dragging operation is complete.

OpenStep Specification—10/19/94 Protocols: NSDraggingDestinatioh-251

NSDragginginfo

Adopted By: no OpenStep classes

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDragginglnfo protocol declares methods that supply information about a dragging session (see the
NSDraggingDestination protocol, an informal protocol of NSObject, for definitions of dragging terms). A view or
window first registers dragging types; it may then send NSDraggingInfo protocol messages while dragging occurs
to get details about that dragging session.

NSDragginglnfo methods are designed to be invoked from within an object’'s implementation of the
NSDraggingDestination protocol methods. An object that conforms to NSDragginglnfo is passed as the argument
to each of the methods defined by NSDraggingDestination; NSDragginglnfo messages should be sent to this
conforming object. The Application Kit supplies an NSDraggingInfo object automatically so that you never need
to create a class that implements this protocol.

Dragging-Session Information
— (NSWindow *draggingDestinationWindow Returns the destination’s Window.

— (NSPointjiraggingLocation Returns the current location of the cursor’s hot spot,
reckoned in the base coordinate system of the
destination object’'s Window.

— (NSPasteboard dyaggingPasteboard Returns the Pasteboard that holds the dragged data.

— (int/draggingSequenceNumber Returns a number that uniquely identifies the dragging
session.

— (id)draggingSource Returns the source, or “owner,” of the dragged image.

Returnanil if the source isn't in the same application as
the destination.

— (NSDragOperationraggingSourceOperationMask
Returns the operation mask declared by the source.

Image Information

— (NSImage *Jraggedimage Returns the image object that's being dragged. Don't
invoke this method after the user has released the image,
and don't release the object that this method returns.

1-252 Chapter 1: Application Kit OpenStep Specification—10/19/94

— (NSPointiiraggedimagelLocation Returns the current location of the dragged image’s origin.
The image moves in lockstep with the cursor (the
position of which is given bgraggingLocation) but
may be positioned at some offset. The point that's
returned is reckoned in the base coordinate system of
the destination object’s Window.

Sliding the Image

— (voidslideDraggedimageTo{NSPointscreenPoint

Slides the image to the given location in the screen
coordinate system. This method should only be invoked
after the user has released the image but before it's
removed from the screen.

OpenStep Specification—10/19/94 Protocols: NSDraggingInfol-253

NSDraggingSource

(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Protocol Description

NSDraggingSource declares methods that can (or must) be implemented by the source object in a dragging session.
(See the NSDraggingDestination protocol for definitions of dragging terms.JifHgiging sourcés specified as
an argument to thdraglmage:... message, sent to a NSWindow or NSView, that instigated the dragging session.

Of the methods declared below, only thaggingSourceOperationMaskForLocal: methodmustbe

implemented. The other methods are invoked only if the dragging source implements them. All four methods are
invoked automatically during a dragging session—you never send an NSDraggingSource message directly to an
object.

Querying the Source

— (NSDragOperationyaggingSourceOperationMaskForLocal{(BOOL)isLocal
Returns a mask giving the operations that can be performed
on the dragged image’s data.

— (BOOL)gnoreModifierkeysWhileDragging Returns YES if modifier keys should have no effect on the
type of operation performed.

Informing the Source

— (void)raggedimage(NSImage *)mage Invoked when the dragged image is displayed but before it
beganAt:(NSPointscreenPoint starts following the mouse.

— (voiddraggedimage(NSImage *)mage Invoked after the dragged image has been released and the
endedAt:(NSPointscreenPoint dragging destination has been given a chance to operate.

deposited(BOOL)didDeposit

1-254 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSIgnoreMisspelledWords

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button allows
the user to accept a word that the spelling checker believes is misspelled. In order for this action to update the
“ignored words” list for the document being checked, the NSignoreMisspelledWords protocol must be
implemented.

This protocol is necessary because a list of ignored words is useful only if it pertains to the entire document being
checked, but the spelling checker (NSSpellChecker object) does not check the entire document for spelling at once.
The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a subset of the document at
any one time. The user usually wants to check the entire document, and so usually several spelling checks are run
in succession until no misspelled words are found. This protocol allows the list of ignored words to be maintained
per-document, even though the spelling checks are not run per-document.

The NSIgnoreMisspelledWords protocol specifies a meilgodreSpelling:, which should be implemented like
this:

— (void)ignoreSpelling:(id)sender
{
[[NSSpellChecker sharedSpellChecker] ignoreWord:[[sender selectedCell] stringValue]
inSpellDocumentWithTag:myDocumentTag];
}

The second argument to the NSSpellChecker methmaeWord:inSpellDocumentWithTag: is a tag that the
NSSpellChecker can use to distinguish the documents being checked. (See the discussion of “Matching a List of
Ignored Words With the Document It Belongs To” in the description of the NSSpellChecker class.) Once the
NSSpellChecker has a way to distinguish the various documents, it can append new ignored words to the
appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with the
document. See the NSSpellChecker class description for more information.

OpenStep Specification—10/19/94 Protocols: NSignoreMisspelledWorti255

Identifying the Source

— (void)gnoreSpelling:(id)sender Implement to allow an application to ignore misspelled
words on a document-by-document basis. This message
is sent by the NSSpellChecker instance to the object
whose text is being checked. To inform the
NSSpellChecker that a particular spelling should be
ignored, the receiver asks the NSSpellChecker for the
string value of its selected cell. It then sends the
NSSpellChecker an
ignoreWord:inSpellDocumentWithTag: message.

1-256 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSMenuActionResponder
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSMenu.h

Protocol Description

This informal protocol allows your application to update the enabled or disabled status of an NSMenuCell. It
declares only one methodhlidateCell:. By default, every time a user event occurs, NSMenu automatically
enables and disables each visible menu cell based on criteria described later in this specification. Implement
validateCell: in cases where you want to override NSMenu’s default enabling scheme. This is described in more
detail later.

There are two ways that NSMenuCells can be enabled or disabled: Explicitly, by sendatf tiadbled:message,

or automatically, as described below. NSMenuCells are updated automatically unless you send the message
setAutoenablesltems:NOto the NSMenu object. You should never mix the two. That is, nevesetiSeabled:
unless you have disabled the automatic updating.

Automatic Updating of NSMenuCells

Whenever a user event occurs, the NSMenu object updates the status of every visible menu cell. To update the status
of a menu cell, NSMenu tries to find the object that responds to the NSMenuCell's action message. It searches the
following objects in the following order until it finds one that responds to the action message.

» the NSMenuCell's target

» the key window'’s first responder

» the key window's delegate

» the main window’s first responder
« the main window’s delegate

» the NSApplication object

» the NSApplication’s delegate

« the NSMenu's delegate

If none of these objects responds to the action message, the menu cell is disabled. If NSMenu finds an object that
responds to the action message, it then checks to see if that object respondalitetie€ell: message (the

method defined in this informal protocol).vilidateCell: is not implemented in that object, the menu cell is

enabled. If it is implemented, the return valueaidateCell: indicates whether the menu cell should be enabled

or disabled.

OpenStep Specification—10/19/94 Protocols: NSMenuActionRespondef57

For example, the NSText object implementsabjy: method. If your application has a Copy menu cell that sends
thecopy: action message to the first responder, that menu cell is automatically enabled any time an NSText object
is the first responder of the key or main window. If you have an object that might become the first responder and
that object could allow users to select something that they aren't allowed to copy, you can implement the
validateCell: method in that objectalidateCell: can return NO if the forbidden items are selected and YES if

they aren’t. By implementingalidateCell:, you can have the Copy menu item disabled even though its target
object implements theopy: method. If instead your objeseverpermits copying, then you would simply not
implementcopy: in that object, and the cell would be disabled automatically whenever the object is first responder.

If you send @etEnabled:message to enable or disable a menu cell when the automatic updating is turned on, other
objects might reverse what you have done after another user event occursetEadpled; you can never be

sure that a menu cell is enabled or disabled or will remain that way. If your application meetEmsdled; you

must turn off the automatic enabling of menu cells (by sersibutoEnablesitems:NOto NSMenu) in order to

get predictable results.

Updating NSMenucCells

— (BOOL)validateCell:(id)aCell Implemented to override the default action of updating an
NSMenuCell. Return YES to enable the NSMenuCell,
NO to disable it.

1-258 Chapter 1: Application Kit OpensStep Specification—10/19/94

NSNibAwaking

(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

Protocol Description

This informal protocol consists of a single methamdakeFromNib. It's implemented to receive a notification
message that's sent after objects have been loaded from an Interface Builder archive.

WhenloadNibFile:owner: or a related method loads an Interface Builder archive into an application, each custom
object from the archive is first initialized with it messageirfitFrame: if the object is a kind of View). Outlets

are initialized via angeWariable methods that are available (wheegiableis the name of an instance variable).
(These methods are optional; the Objective C run time system automatically initializes outlets.) Finally, after all the
objects are fully initialized, they each receiveaarakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it's possibidaoable

message to be sent to an object before its companion objects have been unarchived. For tisistvadabie

methods should not send messages to other objects in the archive. However, messages to other objects can safely
be sent from withimwakeFromNib—by this point it's assured that all the objects are unarchived and fully

initialized.

Typically, awakeFromNib is implemented for only one object in the archive, the controlling or “owner” object for

the other objects that are archived with it. For example, suppose that a nib file contained two Views that must be
positioned relative to each other at run time. Trying to position them when either one of the Views is initialized (in
asetvariable method) might fail, since the other View might not be unarchived and initialized yet. However, it can

be done in aawakeFromNib method:

- awakeFromNib

{

NSRect viewFrame;

[firstView getFrame:&viewFrame];

[secondView moveTo:viewFrame.origin.x + someVariable
:viewFrame.origin.y];

return self;

}

There's no defauiwakeFromNib method; arawakeFromNib message is only sent if an object implements it.
The Application Kit declares a prototype for this method, but doesn't implement it.

OpenStep Specification—10/19/94 Protocols: NSNibAwakingl1-259

Notification of Loading

— (void)awakeFromNib Implemented to prepare an object for service after it has
been loaded from an Interface Builder archive—a
so-called “nib file”. AnawakeFromNib message is
sent to each object loaded from the archive, but only if
it can respond to the message, and only after all the
objects in the archive have been loaded and initialized.
When an object receives awakeFromNib message,
it's already guaranteed to have all its outlet instance
variables set. There’s no defaaWwakeFromNib
method.

1-260 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSServicesRequests
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSApplication.h

Protocol Description

This informal protocol consists of two methodsiteSelectionToPasteboard:typesand
readSelectionFromPasteboard: The first is implemented to provide data to a remote service, and the second to
receive any data the remote service might send back. Both respond to messages that are generated when the user
chooses a command from the Services menu.

Pasteboard Read/Write

— (BOOL)YeadSelectionFromPasteboardNSPasteboard ppoard
Implemented to replace the current selection (that is, the
text or objects that are currently selected) with data
from pboard.

— (BOOL)writeSelectionToPasteboard{NSPasteboard pboard
types:(NSArray *types Implemented to write the current selectiorpbmardas
typesdata.

OpenStep Specification—10/19/94 Protocols: NSServicesReque$t261

Application Kit Functions

Rectangle Drawing Functions

Optimize Drawing

void NSEraseRectiiSRectaRec} Erases the rectangle by filling it with white. (This does not
alter the current drawing color.)

void NSHighlightRect(NSRectaRec} Highlights or unhighlights a rectangle by switching light
gray for white and vice versa, when drawing on the
screen. If not drawing to the screen, the rectangle is
filled with light gray.

void NSRectClip(NSRectaRec} Intersects the current clipping path with the rectangle
aRect to determine a new clipping path.
void NSRectClipList(const NSRectrects Takes an array @buntnumber of rectangles and intersects
int coun) the current clipping path with each of them. Thus, the

new clipping path is the graphic intersection of all the
rectangles and the original clipping path.

void NSRectFillNSRectaRec) Fills the rectangle referred to byRectwith the current
color.

void NSRectFillList(const NSRectrects
int coun) Fills an array otountrectangles with the current color.

void NSRectFillListWithGrays(const NSRectrects
const float grays int coun) Fills each rectangle in the arregctswith the gray whose
value is stored at the corresponding location in the array
grays Both arrays must be count elements long. Avoid
rectangles that overlap, because the order in which
they’ll be filled can’t be guaranteed.

Draw a Bordered Rectangle

void NSDrawButton(NSRectaRect Draws the bordered light gray rectangle whose appearance
NSRectclipRec) signifies a button in the OpenStep user interfaBect
is the bounds for the button, but only the area where
aRectintersectglipRectis drawn.

1-262 Chapter 1: Application Kit OpensStep Specification—10/19/94

void NSDrawGrayBezel(NSRectaRect
NSReciclipRec)

void NSDrawGroove(NSRectaRect
NSRectclipRec)

NSRectNSDrawTiledRectsfNSRecthoundsRegt
NSRectclipRect
const NSRectEdgestdes
const float yrays
int coun)

void NSDrawWhiteBezelNSRectaRect
NSReciclipRec)

void NSFrameRectNSRectaRec}

void NSFrameRectWithwWidth(NSRectaRect
float frameWidth

Draws a bordered light gray rectangle with the appearance
of a pushed-in button, clipped by intersecting with
clipRect

Draws a light gray rectangle whose border is a groove,
giving the appearance of a typical box in the OpenStep
user interface.

Draws an unfilled rectangle, clipped ¢lipRect whose
border is defined by the parallel arraydesandgrays
both of lengticount Each element afidesspecifies an
edge of the rectangle, which is drawn with a width of
1.0 using the corresponding gray level frgrays If the
edgesarray contains recurrences of the same edge, each
is inset within the previous edge.

Draws a white rectangle with a bezeled border. Only the
area that intersectdipRectis drawn.

Draws a frame of width 1.0 around the inside of a rectangle,
using the current color.

Draws a frame of widtframeWidtharound the inside of a
rectangle, using the current color.

Color Functions

Get Information About Color Space and Window Depth

const NSWindowDepthNSAvailableWindowDepths{oid)

Returns a zero-terminated list of available window depths.

NSWindowDeptiNSBestDepthNSString tolorSpace

int bitsPerSampleint bitsPerPixe)
BOOL planar, BOOL *exactMatch

Returns a window depth deep enough for the given number
of colors, bits per sample, bits per pixel, and if planar.
Upon return, the variable pointed to &yactMatchis
YES if the window depth can accommodate all of the
values given for all of the parameters, NO if not.

int NSBitsPerPixelFromDepth(NSWindowDepthdepth)

OpenStep Specification—10/19/94

Returns the number of bits per pixel for the given window
depth.

Application Kit Functions 1-263

int NSBitsPerSampleFromDepthNSWindowDepthdepth
Returns the number of bits per sample (bits per pixel in
each color component) for the given window depth.

NSString NSColorSpaceFromDepthlNSWindowDepthdepth
Returns the name of the color space that matches the given
window depth.

int NSNumberOfColorComponentsNSString *tolorSpaceNanje
Returns the number of color components in the named
color space.

BOOL NSPlanarFromDepth(NSWindowDepthdepth
Returns YES if the given window depth is planar, NO if

not.
Read the Color at a Screen Position
NSColor*NSReadPixel(NSPointlocation) Returns the color of the pixel at the given location, which
must be specified in the current view’'s coordinate
system.
Text Functions
Filter Characters Entered into a Text Object
unsigned shomiSEditorFilter(unsigned shortheChar
int flags, Identical toNSFieldFilter() except that it passes on values
NSStringEncodingheEncoding corresponding to Return, Tab, and Shift-Tab directly to

the NSText object.

unsigned shomiSFieldFilter(unsigned shotiheChar

int flags Checks each character the user types into an NSText

NSStringEncodingheEncoding object’s text, allowing the user to move the selection
among text fields by pressing Return, Tab, or Shift-Tab.
Alphanumeric characters are passed to the NSText
object for display. The function returns either the ASCII
value of the character typed, O (for illegal characters or
ones entered while a Command key is held down), or a
constant that the Text object interprets as a movement
command.

1-264 Chapter 1: Application Kit OpensStep Specification—10/19/94

Calculate or Draw a Line of Text (in Text Object)

int NSDrawALine(id self, Draws a line of text, using the global variables set by
NSLayInfo HayInfo) NSScanALine() The return value has no significance.

int NSScanALine(d self, Determines the placement of characters in a line ofselkt.
NSLaylnfo HayInfo) refers to the NSText object calling the function, and

*layInfois an NSLaylInfo struct. The function returns 1
if a word’s length exceeds the width of a line and the
NSText's charWrap instance variable is NO. Otherwise,
it returns O.

Calculate Font Ascender, Descender, and Line Height (in Text Object)

void NSTextFontInfo(id fid, Calculates, and returns by reference, the ascender,
float *ascenderfloat *descender descender, and line height values for the NSFont given
float *lineHeigh) by font

Access Text Object’'s Word Tables

NSData *NSDataWithWordTable(constunsigned chaf smartLeft

const unsigned ch&rsmartRight Given pointers to word table structures, records the
const unsigned chig charClasses structures in the returned NSData object. The
const NSFSMrwrapBreaks arguments are similar to those of

int wrapBreaksCount NSReadWordTable()

const NSFSMrclickBreaks
int clickBreaksCount

BOOL charWrap

void NSReadWordTablefNSZone *zone Givendata, creates word tables in the memory zone
NSData tata, specified byone returning (in the subsequent
unsigned char *$martLeff arguments) pointers to the various tables. The integer
unsigned char *$martRight pointer arguments return the length of the preceding
unsigned char *¢harClasses array, anctharWrapindicates whether words whose
NSFSM **wrapBreaks length exceeds the NSText object’s line length should
int *wrapBreaksCount be wrapped on a character-by-character basis.

NSFSM **clickBreaks
int *clickBreaksCount
BOOL *charWrap

OpenStep Specification—10/19/94 Application Kit Functions 1-265

Array Allocation Functions for Use by the NSText Class

NSTextChunk NSChunkCopy(NSTextChunk pc,
NSTextChunk tpo

NSTextChunkNSChunkGrow(NSTextChunk pc,
int newUsedl

NSTextChunk NSChunkMalloc(int growBYy
int initUsed

NSTextChunk NSChunkRealloc(NSTextChunk pc)

Copies the arragcto the arraglpcand returns a pointer to
the copy.

Increases the array identified by the poipteto a size of
newUsedytes.

Allocates initial memory for a structure whose first field is
anNSTextChunk structure and whose subsequent field
is a variable-sized array. The amount of memory
allocated is equal timitUsed If initUsedis 0,growBy
bytes are allocatedrowByspecifies how much
memory should be allocated when the chunk grows.

Increases the amount of memory available for the array
identified by the pointgrc, as determined by the array’s
NSTextChunk.

NSTextChunk NSChunkZoneCopy(NSTextChunk pc,

NSTextChunk tpc
NSZone %Zzong

Like NSChunkCopy(), but uses the specified zone of
memory.

NSTextChunk NSChunkZoneGrow(NSTextChunk pc,

int newUsed
NSZone %Zzong

NSTextChunk NSChunkZoneMalloc(int growBy
int initUsed
NSZone *zong

Like NSChunkGrow(), but uses the specified zone of
memory.

Like NSChunkMalloc(), but uses the specified zone of
memory.

NSTextChunk NSChunkZoneReallocNSTextChunk pc,

NSZone Zzong

Like NSChunkRealloc() but uses the specified zone of
memory.

Imaging Functions

Copy an image

void NSCopyBitmapFromGStatefnt srcGstate
NSRectsrcRect
NSRectdestReqt

1-266 Chapter 1: Application Kit

Copies the pixels in the rectangleRecto the rectangle
destRectThe source rectangle is defined in the
graphics state designated srgGstate and the
destination is defined in the current graphics state.

OpensStep Specification—10/19/94

void NSCopyBits(int srcGstate
NSRectsrcRect
NSPointdestPoint

Render Bitmap Images

void NSDrawBitmap(NSRectrect,
int pixelsWide
int pixelsHigh
int bitsPerSample
int samplesPerPixel
int bitsPerPixe)
int bytesPerRow
BOOL isPlanar,
BOOL hasAlpha
NSString *tolorSpaceName
const unsigned char *congatg5])

Copies the pixels in the rectangkeRecto the location
destPoint The source rectangle is defined in the current
graphics state grcGstatds NSNullObject; otherwise,
in the graphics state designatedsbyGstate The
destPointdestination is defined in the current graphics
state.

Renders an image from a bitmagctis the rectangle in
which the image is drawn, addtais the bitmap data,
stored in up to 5 channels unlésBlanaris NO (in
which case the channels are interleaved in a single
array).

Attention Panel Functions

Create an Attention Panel without Running It Yet

id NSGetAlertPanel(NSString #itle,
NSString ‘msg
NSString "defaultButton
NSString *alternateButton
NSString "otherButton, .).

OpenStep Specification—10/19/94

Returns an NSPanel object that you can use in a modal
session. Unlik®&lSRunAlertPanel(), no button is
displayed ifdefaultButtonis NULL.

Application Kit Functions 1-267

Create and Run an Attention Panel

int NSRunAlertPanel(NSString #itle, Creates an attention panel that alerts the user to some
NSString 'msg, consequence of a requested action, and runs the panel in
NSString "defaultButton, a modal event loottitle is the panel’s title (by default,
NSString *alternateButton, “Alert”); msgis theprintf() -style message that's
NSString “otherButton, .). displayed in the panalgfaultButtor{by default, “OK")

is the title for the main button, also activated by Return;
alternateButtorandotherButtongive two more

choices, which are displayed only if the corresponding
argument isn’t NULL. The trailing arguments are a
variable number obrintf() -style arguments to msg.

int NSRunLocalizedAlertPanel(NSString table, Similar toNSRunAlertPanel(), but preferred, as it makes

NSString title, use of OpenStep’s localization feature for languages of
NSString 'msg, different countries.
NSString *defaultButton,

NSString *alternateButton,
NSString *otherButton, .).

Release an Attention Panel

void NSReleaseAlertPaneld pane) Releases the specified alert panel.

Services Menu Functions

Determine Whether an Item Is Included in Services Menus

int NSSetShowsServicesMenultemSString item,

BOOL shawvServicg Determines (based on the valueshbwServicewhether
theitem command will be included in other
applications’ Services menugemdescribes a service
provided by this application, and should be the same
string entered in the “Menu Item:” field of the services
file. The function returns O upon success.

BOOL NSShowsServicesMenulteniSString “item)
Returns YES if item is currently shown in Services menus.

1-268 Chapter 1: Application Kit OpensStep Specification—10/19/94

Programmatically Invoke a Service

BOOL NSPerformService(NSString ftem, Invokes a service found in the application’s Services menu.
NSPasteboardpboard itemis the name of a Services menu item, in any
language; a slash in this name represents a submenu.
pboardmust contain the data required by the service,
and when the function returrahoardwill contain the
data supplied by the service provider.

Force Sewices Menu to Update Based on New Ser vices

void NSUpdateDynamicServices(oid) Re-registers the services the application is willing to
provide, by reading the file with the extension
“.service” in the application path or in the standard path
for services.

Other Application Kit Functions

Play the System Beep

void NSBeepyoid) Plays the system beep.

Return File-related Pasteboard Types

NSString* NSCreateFileContentsPboard Type{SString fileTypg
Returns a string naming a pasteboard type that represents a
file’s contents, based on the supplied stfileyype
fileTypeshould generally be the extension part of a file
name. The conversion from a named file type to a
pasteboard type is simple; no mapping to standard
pasteboard types is attempted.

NSString NSCreateFilenamePboardTypeSString filenamé

Returns a string naming a pasteboard type that represents a
a file name, based on the supplied stfilegname

NSString NSGetFileType(NSString pboardTypg Returns the extension or file name from which the
pasteboard typgboardTypevas derivednil is returned
if pboardTypdsn’t a pasteboard type created by
NSCreateFileContentsPboardType(Jr
NSCreateFilenamePboardType()

OpenStep Specification—10/19/94 Application Kit Functions 1-269

NSArray *"NSGetFileTypesNSArray *pboardTypes
Accepts an array of pasteboard types and returns an array
of the unique extensions and file names from the
file-content and file-name types found in the input array.
It returnsnil if the input array contains no file-content
or file-name types.

Draw a Distinctive Outline around Linked Data

void NSFrameLinkRect(NSRectaRect Draws a distinctive link outline just outside the rectangle
BOOL isDestination aRect To draw an outline around a destination link,
isDestinationshould be YES, otherwise NO.
float NSLinkFrameThickness{void) Returns the thickness of the link outline so that the outline
can be properly erased by the application, or for other
purposes.

Convert an Event Mask Type to a Mask

unsigned inNSEventMaskFromType(NSEventTypeypéd
Returns the event mask correspondintype (which is an
enumeration constant). The returned mask equals 1
left-shifted bytypebits.

1-270 Chapter 1: Application Kit OpensStep Specification—10/19/94

Types and Constants

Application

id NSApp; Represents the application’s NSApplication object.

typedef struct _NSModalSessioN8ModalSession This structure stores information used by the system during
a modal session.

enum { Predefined return values fonModalFor: and
NSRunStoppedResponse runModalSession:
NSRunAbortedResponsge
NSRunContinuesResponse

h

NSString NSModalPanelRunLoopMode Input-filter modes passed to NSRunLoop.

NSString NSEventTrackingRunLoopMode;

Box

typedef enum _NSTitlePosition { This type’s constants represent the locations where an
NSNoTitle, NSBox’s title is placed in relation to the border
NSAboveTop (setTitlePosition: andtitlePosition).
NSAtTop,
NSBelowTop
NSAboveBottom
NSAtBottom,
NSBelowBottom
} NSTitlePosition;

OpenStep Specification—10/19/94 Types and Constant4-271

Buttons

typedef enum _NSButtonType { The constant®l8ButtonType indicate the way
NSMomentaryPushButton, NSButtons and NSButtonCells behave when
NSPushOnPushOffButton pressed, and how they display their state. They are
NSToggleButton used in NSButton’setType: method.
NSSwitchButton,

NSRadioButton,
NSMomentaryChangeButton
NSOnOffButton

} NSButtonType;

Cells and Button Cells

typedef enum _NSCellType { Represent different types of NSCell objects.
NSNullCellType, No display.
NSTextCellType, Displays text.
NSImageCellType Displays an image.

} NSCellType Returned fronmtype and set vigetType.

typedef enum _NSCellimagePosition { Represent the position of an NSButtonCell relative to its
NSNolmage title. Returned fronimagePositionand set through
NSImageOnly, setlmagePosition:

NSImageLeft,

NSImageRight,

NSImageBelow

NSImageAbove

NSImageOverlaps
} NSCelllmagePosition

1-272 Chapter 1: Application Kit OpenStep Specification—10/19/94

typedef enum _NSCellAttribute {
NSCellDisabled
NSCellState
NSPushiInCell
NSCellEditable,
NSChangeGrayCell
NSCellHighlighted,
NSCellLightsByContents
NSCellLightsByGray,
NSChangeBackgroundCell
NSCellLightsByBackground,
NSCelllsBordered
NSCellHasOverlappingimage
NSCellHaslmageHorizontal
NSCellHaslmageOnLeftOrBottom,
NSCellChangesContents
NSCelllsinsetButton

} NSCellAttribute ;

enum {
NSAnyType,
NSIntType,
NSPositivelntType,
NSFloatType,
NSPositiveFloatType
NSDateType
NSDoubleType
NSPositiveDoubleType

3

enum {
NSNoCellMask
NSContentsCellMask
NSPushInCellMask
NSChangeGrayCellMask
NSChangeBackgroundCellMask

OpenStep Specification—10/19/94

The constant valueblBellAttribute represent
parameters that you can set and access through
NSCell's and NSButtonCell'setParameter:to:and
getParameter: methods. Only the first five constants
are used by NSCell; the others apply to NSButtonCells
only.

Numeric data types that an NSCell can accept. Used as
the argument fosetEntryType:.

NSButtonCell uses these values to determine how to
highlight a button cell or show an ON state
(returned/passed showsStateBysetShowsStateBy
andhighlightsBy/setHighlightsBY).

Types and Constant4-273

Color

enum {
NSGrayModeColorPanel
NSRGBModeColorPane]
NSCMYKModeColorPanel,
NSHSBModeColorPane)
NSCustomPaletteModeColorPanel
NSColorListModeColorPanel,
NSWheelModeColorPanel

3

enum {
NSColorPanelGrayModeMask
NSColorPanelRGBModeMask
NSColorPanelCMYKModeMask,
NSColorPanelHSBModeMask
NSColorPanelCustomPaletteModeMask
NSColorPanelColorListModeMask,
NSColorPanelWheelModeMask
NSColorPanelAllModesMask

Tags that identify modes (or views) in the color panel.

Bit masks for determining the current mode (or view) of the
color panel.

Data Link

typedef intNSDataLinkNumber;

NSString NSDataLinkFileNameExtension

typedef enum _NSDatalLinkDisposition {
NSLinkInDestination,
NSLinkinSource,
NSLinkBroken

} NSDataLinkDisposition;

typedef enum _NSDatalinkUpdateMode {
NSUpdateContinuously
NSUpdateWhenSourceSaved
NSUpdateManually,
NSUpdateNever

} NSDataLinkUpdateMode;

1-274 Chapter 1: Application Kit

Returned by NSDataLinkinkNumber method as a
persistent identifier of a destination link.

The file name suffix to be used when data links are saved.
The default iobjlink .

Returned by NSDataLidlsposition method to identify
a link as a destination link, a source link, or a broken
link.

Identifies when a link’s data is to be updated. Set through
thesetUpdateMode:method and returned by
updateMode

OpenStep Specification—10/19/94

Drag Operation

typedef enum _NSDragOperation { The constants of this type identify different kinds of
NSDragOperationNone dragging operation®SDragOperationNoneimplies
NSDragOperationCopy that the operation is rejected.
NSDragOperationLink, NSDragOperationPrivate means that the system
NSDragOperationGenerig leaves the cursor alone.
NSDragOperationPrivate,
NSDragOperationAll

} NSDragOperation;

OpenStep Specification—10/19/94 Types and Constant4-275

Event Handling

typedef enum _NSEventType {
NSLeftMouseDown
NSLeftMouseUp,
NSRightMouseDown
NSRightMouseUp
NSMouseMoved
NSLeftMouseDragged
NSRightMouseDragged
NSMouseEntered
NSMouseExited
NSKeyDown,
NSKeyUp,
NSFlagsChanged
NSPeriodig
NSCursorUpdate

} NSEventType

enum {
NSUpArrowFunctionKey = 0xF700,
NSDownArrowFunctionKey = OxF701,
NSLeftArrowFunctionKey = 0xF702,
NSRightArrowFunctionKey = OxF703,
NSF1FunctionKey = 0xF704,
NSF2FunctionKey = 0xF705,
NSF3FunctionKey = 0xF706,
NSF4FunctionKey = 0xF707,
NSF5FunctionKey = 0xF708,
NSF6FunctionKey = 0xF709,
NSF7FunctionKey = OxF70A,
NSF8FunctionKey = 0xF70B,
NSF9FunctionKey = 0xF70C,
NSF10FunctionKey= OxF70D,
NSF11FunctionKey= OxF70E,
NSF12FunctionKey= OxF70F,
NSF13FunctionKey= 0xF710,
NSF14FunctionKey= OxF711,
NSF15FunctionKey= OxF712,
NSF16FunctionKey= OxF713,
NSF17FunctionKey= OxF714,
NSF18FunctionKey= OxF715,
NSF19FunctionKey= OxF716,
NSF20FunctionKey= OxF717,
NSF21FunctionKey= OxF718,

1-276 Chapter 1: Application Kit

Each constanti8EventTypeidentifies an event type.
(See the NSEvent class description.)

Unicodes that identify function keys on the keyboard,
OpensStep reserves the range 0xF700-0xF8FF for
this purpose. The availability of some keys is
system-dependent.

OpenStep Specification—10/19/94

NSF22FunctionKey= 0xF719,
NSF23FunctionKey= OxXF71A,
NSF24FunctionKey= OxF71B,
NSF25FunctionKey= OxF71C,
NSF26FunctionKey= OxF71D,
NSF27FunctionKey= OxF71E,
NSF28FunctionKey= OXF71F,
NSF29FunctionKey= 0xF720,
NSF30FunctionKey= OxF721,
NSF31FunctionKey= 0xF722,
NSF32FunctionKey= 0xF723,
NSF33FunctionKey= 0xF724,
NSF34FunctionKey= OxF725,
NSF35FunctionKey= OxF726,
NSinsertFunctionKey = 0xF727,
NSDeleteFunctionKey= 0xF728,
NSHomeFunctionKey= 0xF729,
NSBeginFunctionKey= OxF72A,
NSEndFunctionKey = OxXF72B,
NSPageUpFunctionKey= 0xF72C,
NSPageDownFunctionKey= 0xF72D,
NSPrintScreenFunctionKey= OxF72E,
NSScrollLockFunctionKey = OxXF72F,
NSPauseFunctionKey= 0xF730,
NSSysRegFunctionKey= OxF731,
NSBreakFunctionKey = OxF732,
NSResetFunctionKey= OxF733,
NSStopFunctionKey= 0xF734,
NSMenuFunctionKey = 0xF735,
NSUserFunctionKey= 0xF736,
NSSystemFunctionKey= 0xF737,
NSPrintFunctionKey = OxF738,
NSClearLineFunctionKey = 0xF739,
NSClearDisplayFunctionKey= 0xF73A,
NSinsertLineFunctionKey = 0xF73B,
NSDeleteLineFunctionKey= 0xF73C,
NSinsertCharFunctionKey = 0xF73D,
NSDeleteCharFunctionKey= OxF73E,
NSPrevFunctionKey = OxF73F,
NSNextFunctionKey = 0xF740,
NSSelectFunctionKey= 0xF741,
NSExecuteFunctionKey= 0xF742,
NSUndoFunctionKey= OxF743,
NSRedoFunctionKey= 0xF744,
NSFindFunctionKey = 0xF745,
NSHelpFunctionKey = OxF746,

OpenStep Specification—10/19/94 Types and Constant4-277

NSModeSwitchFunctionKey= 0xF747
h

enum { Device-independent bit masks for evaluating event-
NSAlphaShiftkeyMask, modifier flags to determine which modifier key (if any)
NSShiftkeyMask, was pressed.
NSControlKeyMask,
NSAlternateKeyMask,
NSCommandKeyMask
NSNumericPadKeyMask
NSHelpKeyMask,
NSFunctionKeyMask

3

enum { Bit masks for determining the type of events.
NSLeftMouseDownMask
NSLeftMouseUpMask
NSRightMouseDownMask
NSRightMouseUpMask
NSMouseMovedMask
NSLeftMouseDraggedMask
NSRightMouseDraggedMask
NSMouseEnteredMask
NSMouseExitedMask
NSKeyDownMask,
NSKeyUpMask,
NSFlagsChangedMask
NSPeriodicMask,
NSCursorUpdateMask
NSAnyEventMask

Exceptions

Global Exception Strings

The following global strings identify the exceptions returned by various operations in the Application Kit. They are
defined in NSErrors.h.

NSString NSAbortModalException;
NSString WSAbortPrintingException;
NSString NSAppKitlgnoredException;

1-278 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSString NSAppKitVirtualMemoryException ;
NSString NSBadBitmapParametersException
NSString NSBadComparisonException

NSString NSBadRTFColorTableException
NSString NSBadRTFDirectiveException

NSString NSBadRTFFontTableException
NSString NSBadRTFStyleSheetException
NSString NSBrowserlllegalDelegateException
NSString WNSColorListlOException;

NSString WNSColorListNotEditableException;
NSString NSDraggingException

NSString NSFontUnavailableException

NSString NSlllegalSelectorException

NSString NSImageCacheException

NSString NSNibLoadingException

NSString NSPPDIncludeNotFoundException
NSString NSPPDIncludeStackOverflowException
NSString NSPPDIncludeStackUnderflowException
NSString NSPPDParseException

NSString NSPasteboardCommunicationException
NSString WSPrintOperationExistsExceptior (Defined in NSPrintOperation.h.)
NSString NSPrintPackageException

NSString NSPrintingCommunicationException;
NSString NSRTFPropertyStackOverflowException
NSString NSTIFFEXxception;

NSString NSTextLineTooLongException

NSString NSTextNoSelectionException

NSString NSTextReadException

OpenStep Specification—10/19/94 Types and Constant4-279

NSString NSTextWriteException;

NSString NSTypedStreamVersionException

NSString NSWindowServerCommunicationException

NSString NSWordTablesReadException

NSString NSWordTablesWriteException;

Fonts

typedef unsigned iMiSFontTraitMask ;

enum {

h

NSiltalicFontMask,
NSBoldFontMask,
NSUnboldFontMask,
NSNonStandardCharacterSetFontMask
NSNarrowFontMask,
NSExpandedFontMask
NSCondensedFontMask
NSSmallCapsFontMask
NSPosterFontMask
NSCompressedFontMask
NSUnitalicFontMask

typedef unsigned iMISGlyph;

enum {

NSFPPreviewButton,
NSFPRevertButton,
NSFPSetButton
NSFPPreviewField
NSFPSizeField
NSFPSizeTitle
NSFPCurrentField

1-280 Chapter 1: Application Kit

Characterizes one or more of a font’s traits. It's used as an
argument type for several of the methods in the
NSFontManager class. You build a mask by OR’ing
together the following enumeration constants.

Values used by NSFontManager to identify font traits.

A type for numbers identifying font glyphs. It's used as the
argument type for several of the methods in NSFont.

Tags identifying views in the font panel.

OpenStep Specification—10/19/94

const float NSFontldentityMatrix ;

NSString NSAFMAscender,
NSString NSAFMCapHeight;
NSString NSAFMCharacterSet,
NSString NSAFMDescender
NSString NSAFMEncodingScheme
NSString NSAFMFamilyName;
NSString NSAFMFontName;
NSString NSAFMFormatVersion;
NSString NSAFMFullName;
NSString NSAFMiItalicAngle ;
NSString NSAFMMappingScheme
NSString NSAFMNotice;

NSString NSAFMUnderlinePosition;
NSString NSAFMUnderlineThickness
NSString NSAFMVersion;

NSString NSAFMWeight;

NSString NSAFMXHeight;;

Identifies a font matrix that’s used for fonts displayed in an
NSView object that has an unflipped coordinate system.

Global keys to access the values available in the AFM
dictionary. You can convert the appropriate
values (e.g., ascender, cap height) to floating point
values by using NSStringftoatValue method.

Graphics

typedef intNSWindowDepth

typedef enum _NSTIFFCompression {
NSTIFFCompressionNone =1,
NSTIFFCompressionCCITTFAX3 = 3,
NSTIFFCompressionCCITTFAX4 =4,
NSTIFFCompressionLZW =5,
NSTIFFCompressionJPEG = 6,
NSTIFFCompressionNEXT = 32766,
NSTIFFCompressionPackBits = 32773,
NSTIFFCompressionOIdJPEG = 32865

} NSTIFFCompression

OpenStep Specification—10/19/94

This type gives the window-depth limit. Use the
NSAvailableWindowDepths() function to get a list of
available window depths. Use the functions
NSBitsPerSampleFromDepth()
NSBitsPerPixelFromDepth() NSPlanarFromDepth,
andNSColorSpaceFromDepth(to extract
information from a window depth. The
NSWindowDepth type is also used as an argument type
of methods in NSScreen and NSWindow.

The constants defined in this type represent the various
TIFF ¢ag image file formatdata compression

schemes. They are defined in NSBitMaplmageRep and
used in several methods of that class as well as in
theTIFFRepresentationUsingCompression:factor:
method of NSImage.

Types and Constant4-281

enum { NSImageRepMatchesDevicendicates that the value
NSImageRepMatchesDevice varies according to the output device. It can be
I passed in (or received back) as the value of
NSImageRep’bitsPerSample pixelsWide, and
pixelsHigh.

Colorspace Names

Predefined colorspace names. Used as argumek&DnawBitMap() andNSNumberOfColorComponents()
value returned fromSColorSpaceFromDepth()

NSString WNSCalibratedWhiteColorSpace
NSString NSCalibratedBlackColorSpace
NSString WNSCalibratedRGBColorSpace
NSString WNSDeviceWhiteColorSpacg
NSString WNSDeviceBlackColorSpacge
NSString NSDeviceRGBColorSpace
NSString NSDeviceCMYKColorSpace
NSString NSNamedColorSpace
NSString NSCustomColorSpace

Gray Values
Standard gray values for the 2-bit deep grayscale colorspace.
const floatNSBlack;
const floaNSDarkGray;
const floaNSWhite;

const floaNSLightGray;;

Device Dictionary Keys
Keys to get designated values from device dictionaries.
NSString NSDeviceResolution
NSString WNSDeviceColorSpaceName
NSString NSDeviceBitsPerSample

NSString NSDevicelsScreen

1-282 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSString WNSDevicelsPrinter,
NSString NSDeviceSize

Matrix
typedef enum _NSMatrixMode { The constants in this type represent the modes of operation
NSRadioModeMatrix, of an NSMatrix.
NSHighlightModeMatrix ,
NSListModeMatrix ,
NSTrackModeMatrix

} NSMatrixMode;

Notifications

Notifications are posted to all interested observers of a specific condition to alert them that the condition has
occurred. Global strings contain the actual text of the notification. In the Application Kit, these are defined per class.
See the Foundation’s NSNotification and NSNotificationCenter for details.

NSString NSApplicationDidBecomeActiveNotification NSApplication
NSString WSApplicationDidFinishLaunchingNatification;
NSString NSApplicationDidHideNotification ;

NSString WSApplicationDidResignActiveNotification;
NSString WNSApplicationDidUnhideNatification;

NSString WNSApplicationDidUpdateNotification;

NSString NSApplicationWillBecomeActiveNatification;
NSString WNSApplicationWillFinishLaunchingNotification ;
NSString WNSApplicationWillHideNotification ;

NSString NSApplicationWillResignActiveNotification;
NSString NSApplicationWillUnhideNoaotification ;
NSString NSApplicationWillUpdateNotification ;

OpenStep Specification—10/19/94 Types and Constant4-283

NSString WNSColorListChangedNotification; NSColorList
NSString NSColorPanelColorChangedNotification NSColorPanel

NSString WNSControlTextDidBeginEditingNotification; NSControl
NSString NSControl TextDidEndEditingNotification ;
NSString WSControlTextDidChangeNotification;

NSString NSImageRepRegistryChangedNotification NSImageRep

NSString WNSSplitViewDidResizeSubviewsNotification NSSplitView
NSString NSSplitViewWillResizeSubviewsNotification

NSString*NSTextDidBeginEditingNotification; NSText
NSString*NSTextDidEndEditingNotification;
NSString*NSTextDidChangeNotification;

NSString NSViewFrameChangedNotification NSView
NSString NSViewFocusChangedNoatification

NSString NWSWindowDidBecomeKeyNotification NSWindow
NSString NSWindowDidBecomeMainNatification;

NSString NSWindowDidChangeScreenNotificatiorn

NSString NSWindowDidDeminiaturizeNotification;

NSString NSWindowDidExposeNotification

NSString WNSWindowDidMiniaturizeNotification ;

NSString NSWindowDidMoveNotification;

NSString NSWindowDidResignKeyNotification

NSString NSWindowDidResignMainNotification;

1-284 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSString NSWindowDidResizeNoatification
NSString NSWindowDidUpdateNotification;
NSString NWSWindowWillCloseNotification;
NSString NSWindowWillMiniaturizeNotification ;
NSString NSWindowWillMoveNotification ;

NSString NSWorkspaceDidLaunchApplicationNotification; NSWorkspace
NSString NSWorkspaceDidMountNotification,

NSString NSWorkspaceDidPerformFileOperationNatification;

NSString NSWorkspaceDidTerminateApplicationNotification;

NSString NSWorkspaceDidUnmountNotification

NSString NSWorkspaceWillLaunchApplicationNotification;

NSString NSWorkspaceWillPowerOffNotification;

NSString NSWorkspaceWillunmountNotification;

Panel

enum { Values returned by the standard panel buttons,
NSOKButton = 1, OK and Cancel.
NSCancelButton= 0

2

enum { Values returned by tidSRunAlertPanel() function and
NSAlertDefaultReturn =1, byrunModalSession:when the modal session is run
NSAlertAlternateReturn = 0, with a Panel provided BySGetAlertPanel()
NSAlertOtherReturn = -1,
NSAlertErrorReturn = -2

¥

OpenStep Specification—10/19/94 Types and Constant4-285

Page Layout

enum { Tags that identify buttons, fields, and other views of the
NSPLImageButton, Page Layout panel.
NSPLTitleField,
NSPLPaperNameButton
NSPLUnitsButton,
NSPLWidthForm,
NSPLHeightForm,
NSPLOrientationMatrix ,
NSPLCancelButton,
NSPLOKButton

Pasteboard

Pasteboard Type Globals
Identifies the standard pasteboard types. These are used in a variety of NSPasteboard methods and functions.
NSString WNSStringPboardType
NSString WSColorPboardType
NSString NSFileContentsPboardType
NSString NSFilenamesPboardType
NSString NSFontPboardType
NSString NSRulerPboardType
NSString WNSPostScriptPboardType
NSString NSTabularTextPboardType;
NSString NSRTFPboardType
NSString NSTIFFPboardType;
NSString WSDataLinkPboardType; (Defined in NSDataLink.h.)
NSString NSGeneralPboardType (Defined in NSSelection.h.)

1-286 Chapter 1: Application Kit OpenStep Specification—10/19/94

Pasteboard Name Globals

Identifies the standard pasteboard names. Used in class rpagtedoardWithName:to get a pasteboard by

name.
NSString NSDragPboard
NSString NSFindPboard;
NSString NSFontPboard
NSString NSGeneralPboard
NSString WSRulerPboard;

Printing

typedef enum _NSPrinterTableStatus {
NSPrinterTableOK,
NSPrinterTableNotFound,
NSPrinterTableError

} NSPrinterTableStatus

typedef enum _NSPrintingOrientation {
NSPortraitOrientation ,
NSLandscapeOrientation

} NSPrintingQOrientation ;

typedef enum _NSPrintingPageOrder {
NSDescendingPageOrder
NSSpecialPageOrder
NSAscendingPageOrder
NSUnknownPageOrder

} NSPrintingPageOrder;

typedef enum _NSPrintingPaginationMode {

NSAutoPagination,
NSFitPagination,
NSClipPagination

} NSPrintingPaginationMode;

OpenStep Specification—10/19/94

These constants describe the state of a printer-information
table stored by an NSPrinter object. It is the argument
type of the return value statusForTable..

These constants represent the way a page is oriented for
printing.

These constants describe the order in which pages are
spooled for printingNSSpecialPageOrdetells the
spooler not to rearrange pages. Set through
NSPrintingOperation’setPageOrder:method and
returned by itpageOrder method.

These constants represent the different ways an image is
divided into pages during pagination. Pagination can
occur automatically, the image can be forced onto a
page, or it can be clipped to a page.

Types and Constant4-287

enum { Tags that identify text fields, controls, and other views in
NSPPSaveButton the Print Panel.
NSPPPreviewButton
NSFaxButton,
NSPPTitleField,
NSPPImageButton
NSPPNameTitle
NSPPNameField
NSPPNoteTitlg
NSPPNoteField
NSPPStatusTitle
NSPPStatusField
NSPPCopiesField
NSPPPageChoiceMatrix
NSPPPageRangeFrom
NSPPPageRangeTo
NSPPScaleField
NSPPOptionsButton
NSPPPaperFeedButton
NSPPLayoutButton

Printing Information Dictionary Keys

The keys in the mutable dictionary associated with NSPrintingInfo. See NSPrintingInfo.h for types and
descriptions of values.

NSString NSPrintAllPages,

NSString NSPrintBottomMargin ;
NSString WSPrintCopies

NSString NSPrintFaxCoverSheetName
NSString WNSPrintFaxHighResolution;
NSString NSPrintFaxModem;

NSString WNSPrintFaxReceiverNames
NSString NSPrintFaxReceiverNumbers
NSString WSPrintFaxReturnReceipt;
NSString NSPrintFaxSendTime
NSString NSPrintFaxTrimPageEnds
NSString NSPrintFaxUseCoverSheet

1-288 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSString NSPrintFirstPage;
NSString NSPrintHorizonalPagination;
NSString NSPrintHorizontallyCentered;
NSString NSPrintJobDisposition;
NSString NSPrintJobFeatures
NSString NSPrintLastPage

NSString NSPrintLeftMargin ;
NSString NSPrintManualFeed;
NSString NSPrintOrientation ;
NSString NSPrintPackageException
NSString NSPrintPagesPerSheet
NSString NSPrintPaperFeed
NSString WNSPrintPaperName
NSString NSPrintPaperSize
NSString WNSPrintPrinter ;

NSString NSPrintReversePageOrder
NSString NSPrintRightMargin ;
NSString NSPrintSavePath

NSString WNSPrintScalingFactor,
NSString NSPrintTopMargin ;
NSString NSPrintVerticalPagination;
NSString NSPrintVerticallyCentered,;

Print Job Disposition Values

These global constants define the disposition of a print job. See NSPrimgktftdbDisposition:and
jobDisposition.

NSString NSPrintCancelJob;
NSString NSPrintFaxJob;
NSString NSPrintPreviewJob;

OpenStep Specification—10/19/94 Types and Constant4-289

NSString NSPrintSaveJoh
NSString NSPrintSpoolJob

Save Panel

enum {
NSFileHandlingPanellmageButton
NSFileHandlingPanelTitleField,
NSFileHandlingPanelBrowser
NSFileHandlingPanelCancelButton
NSFileHandlingPanelOKButton,
NSFileHandlingPanelForm,
NSFileHandlingPanel[HomeButton
NSFileHandlingPanelDiskButton
NSFileHandlingPanelDiskEjectButton

Tags that identify buttons, fields, and other views in the
Save Panel.

Scroller

typedef enum _NSScrollArrowPosition {
NSScrollerArrowsMaxEnd,
NSScrollerArrowsMinEnd ,
NSScrollerArrowsNone

} NSScrollArrowPosition;

typedef enum _NSScrollerPart {
NSScrollerNoPart,
NSScrollerDecrementPage
NSScrollerKnob,
NSScrollerincrementPage
NSScrollerDecrementLine
NSScrollerincrementLine,
NSScrollerKnobSlot

} NSScrollerPart;

typedef enum _NSScrollerUsablePart {
NSNoScrollerParts
NSOnlyScrollerArrows,
NSAllScrollerParts

} NSUsableScrollerParts

1-290 Chapter 1: Application Kit

NSScroller uses these constantsatAisowPosition:
method to set the position of the arrows within the
scroller.

NSScroller uses these constantsiiPast method to
identify the part of the scroller specified in a mouse
event.

These constants define the usable parts of an NSScroller
object.

OpenStep Specification—10/19/94

typedef enum _NSScrollerArrow {
NSScrollerincrementArrow,
NSScrollerDecrementArrow
} NSScrollerArrow;

const floatNSScrollerWidth;

These constants indicate the two types of scroller arrow.
NSScroller'sdrawArrow:highlight: method takes an
NSScrollerArrow as the first argument.

Identifies the default width of a vertical NSScroller object
and the default height of a horizontal NSScroller object.

Text
typedef struct _NSBreakArray {
NSTextChunkchunk;
NSLineDescbreakd[1];

} NSBreakArray;

typedef struct _NSCharArray {
NSTextChunkchunk;
unsigned chatext[1];

} NSCharArray;

typedef unsigned shortifSCharFilterFunc) (
unsigned shortharCode
int flags
NSStringEncodingheEncodiny

typedef struct _NSFSM {
const struct _NSFSM rext;
short delta;
short token;

} NSFSM;

typedef struct _NSHeightChange {
NSLineDesclineDesg
NSHeightinfoheightinfo;

} NSHeightChange

typedef struct _NSHeightinfo {
float newHeight;
float oldHeight;
NSLineDesclineDesg

} NSHeightInfo;

OpenStep Specification—10/19/94

Holds line-break information for an NSText object. It's
mainly an array of line descriptors.

Holds the character array for the current line in the NSText
object.

The character filter function analyzes each character the
user enters in the NSText object.

A word definition finite-state machine structure used by an
NSText object.

Associates line descriptors and line-height information in
an NSText object.

Stores height information for each line of text in an NSText
object.

Types and Constant4-291

typedef struct _NSLay {
floatx;
floaty;
short offset
short chars;
id font;
void *paraStyle;
NSRun *un;
NSLayFlagdFlags,
} NSLay;

typedef struct _NSLayArray {
NSTextChunkchunk;
NSLay layd[1];

} NSLayArray;

typedef struct {
unsigned inmustMove:1;
unsigned intsMoveChar:1;
unsigned int RESERVED:14;
} NSLayFlags

typedef struct _NSLaylInfo {

NSRectrect;

floatdescent

floatwidth;

float left;

floatright ;

floatrightindent ;

NSLayArray Hays,

NSWidthArray *widths;

NSCharArray thars,

NSTextCacheache

NSRect textClipRect;

struct _IFlags {
unsigned inhorizCanGrow:1;
unsigned invertCanGrow:1;
unsigned inerasel;
unsigned inping:1;
unsigned inendsParagraphi;
unsigned intesetCachel,;
unsigned int RESERVED:10;

} IFlags;

} NSLayInfo;

typedef shorNSLineDes¢

1-292 Chapter 1: Application Kit

Represents a single sequence of text in a line and records
everything needed to select or draw that piece.

Holds the layout for the current line. Since the structure’s
first field is arNSTextChunk structureNSLayArray s
can be manipulated by the functions that manage
variable-sized arrays of records.

Records whether a text lay in an NSText object needs
special treatment (e.g., because of non-printing
characters).

NSText’s scanning and drawing functions use this
structure to communicate information about lines of
text.

Used to identify lines of text in the NSText object.

OpenStep Specification—10/19/94

typedef enum _NSParagraphProperty {
NSLeftAlignedParagraph,
NSRightAlignedParagraph,
NSCenterAlignedParagraph
NSJustificationAlignedParagraph,
NSFirstindentParagraph,
NSIndentParagraph,
NSAddTabParagraph,
NSRemoveTabParagraph
NSLeftMarginParagraph,
NSRightMarginParagraph

} NSParagraphProperty;

typedef struct _NSRun {
id font;
int chars;
void *paraStyle;
int textRGBColor;
unsigned charsuperscript;
unsigned charsubscript;
id info;
NSRunFlagsFlags;

} NSRun;

typedef struct _ NSRunArray {
NSTextChunkchunk;
NSRun runs[1];

} NSRunArray;

typedef struct {
unsigned inunderline:1;
unsigned indummy:1;
unsigned insubclassWantsRTF1;
unsigned ingraphic:1;
unsigned inforcedSymbot1;
unsigned int RESERVED:11;

} NSRunFlags

typedef struct _NSSelPt {
int cp;
int line;
floatx;
floaty;
int clst
float ht;
} NSSelPt

OpenStep Specification—10/19/94

The constants of this type identify specific
paragraph properties for selected text.
NSText's etSelProp: method takes this
argument type.

In an NSText object, this structure represents a single
sequence of text with a given format.

This structure holds the array of text runs in an NSText
object. Since the first field is an NSTextChunk structure
you can manipulate the items in the array with the
functions that manage variable-sized arrays of records.

The fields of this structure record whether a run in an
NSText object contains graphics, is underlined, or
if an alternate character forced the use of a symbol.

Represents one end of a selection in an NSText object.
Character position.
Offset of LineDesc in break table.
x coordinate.
y coordinate.
Character position of first character in the line.
Line height.

Types and Constant4-293

typedef struct _NSTabStop {
short kind;
floatx;

} NSTabStop

typedef struct _NSTextBlock {
struct _NSTextBlock text;
struct _NSTextBlock prior ;
struct _tbFlags {
unsigned intmalloced1;
unsigned inPAD:15;
} tbFlags;
short chars;
unsigned chartéxt;
} NSTextBlock;

typedef struct _NSTextCache {
int curPos,
NSRun *turRun;
int runFirstPos;
NSTextBlock TturBlock;
int blockFirstPos;

} NSTextCache

typedef struct _NSTextChunk {
short growby;
int allocated
int used

} NSTextChunk;

typedef char *(NSTextFilterFunc) (
id self,
unsigned char * insertText,
int *insertLength,
int position);

typedef int (NSTextFung (
id self,
NSLaylInfo *layInfo);

typedef enum _NSTextAlignment {
NSLeftTextAlignment,
NSRightTextAlignment,
NSCenterTextAlignment,
NSJustifiedTextAlignment,
NSNaturalTextAlignment

} NSTextAlignment;

1-294 Chapter 1: Application Kit

This structure describes an NSText object’s tab stops.

A structure holds text characters in blocks no bigger than
NSTextBlockSize(see below). A linked list of these
text blocks comprises the text for an NSText
object.

This structure describes the current text block and run, and
the cursor position in the text.

NSText uses this structure to implement variable-sized
arrays of records.

A text filter function implements autoindenting and other
features in an NSText object.

This is the type for an NSText object’'s scanning and
drawing function, as set through #&ScanFunc:
andsetDrawFunc: methods.

The constants of this type determine text alignment. Used
by methods of NSCell, NSControl, NSForm,
NSFormCell, and NSTextnSNaturalTextAlignment
indicates the default alignment for the text.

OpenStep Specification—10/19/94

typedef struct _NSTextStyle {
floatindentlst,
floatindent2nd;
floatlineHt;
floatdescentLine
NSTextAlignment alignment;
short numTabs,
NSTabStop tabs,

} NSTextStyle

typedef struct _NSWidthArray {
NSTextChunkchunk;
floatwidths[1];

} NSwidthArray ;

enum {
NSLeftTab

3

enum {
NSBackspaceKey = 8,
NSCarriageReturnKey =13,
NSDeleteKey 0x7f,
NSBacktabKey =25

h

enum {
NSlllegalTextMovement = 0,
NSReturnTextMovement = 0x10,
NSTabTextMovement = 0x11,
NSBacktabTextMovement = 0x12,
NSLeftTextMovement = 0x13,
NSRightTextMovement = 0x14,
NSUpTextMovement = 0x15,
NSDownTextMovement = 0x16

3

enum {
NSTextBlockSize =512

h

OpenStep Specification—10/19/94

NSText uses this structure to describe text layout and tab
stops.

Holds the character widths for the current line.
Since the first field is an NSTextChunk structure
you can manipulate the items in the array with the
functions that manage variable-sized arrays of records.

This constant is used by the NSText
object’s tab functions.

These character-code constants are used by the NSText
object’s character filter function.

Movement codes describing types of movement between
text fields. Passed in to NSText delegates as the last
argument ofextDidEnd:endChar:.

The size, in bytes, of a text block.

Types and Constant4-295

Break Tables

These tables (with their associated sizes) are finite-state machines that determine word wrapping in an NSText
object.

const NSFSM NSCBreakTable

int NSCBreakTableSize

const NSFSM NSEnglishBreakTable
int NSEnglishBreakTableSize

const NSFSM NSEnglishNoBreakTable
int NSEnglishNoBreakTableSize

Character Category Tables
These tables define the character classes used in an NSText object’s break and click tables.
const unsigned chalN'SCCharCatTable;
const unsigned chaNSEnglishCharCatTable

Click Tables

NSText objects use these tables as finite-state machines that determine which characters are selected when the user
double-clicks.

const NSFSM NSCClickTable;

int NSCClickTableSize

const NSFSM NSEnglishClickTable;
int NSEnglishClickTableSize

Smart Cut and Paste Tables

These tables are suitable as arguments for the NSText me#iBdsSelSmartableandsetPostSelSmartTable:
When users paste text into an NSText object, if the character to the left (right) side of the new word is not in the left
(right) table, an extra space is added to that side.

const unsigned chalNSCSmartLeftChars;
const unsigned chalNSCSmartRightChars;
const unsigned chalNSEnglishSmartLeftChars;

const unsigned chaNSEnglishSmartRightChars

1-296 Chapter 1: Application Kit OpenStep Specification—10/19/94

NSCStringText Internal State Structure

This is the structure returned by t®tringTextinternalState method of NSCStringText, for use only by
applications that need to access the internal state of an NSCStringText object.

typedef struct _ NSCStringTextInternalState {
const NSFSM breakTable;
const NSFSM ¢lickTable;

const unsigned chapteSelSmartTable
const unsigned chapbstSelSmartTable
const unsigned chacharCategoryTable

chardelegateMethods
NSCharFilterFuncharFilterFunc;
NSTextFilterFundextFilterFunc;

NSString * string;
NSTextFuncscanFung
NSTextFunarawFunc;
id delegate

int tag;
void *cursorTE;;

NSTextBlock firstTextBlock;
NSTextBlock 1astTextBlock;
NSRunArray theRuns

NSRun typingRun;
NSBreakArray theBreaks
int growLine;

int textLength;

float maxy;

float maxX;

NSRectbodyRect
floatborderWidth ;
charclickCount;
NSSelPtspG;
NSSelPspN,;
NSSelPtanchorL;
NSSelPtanchorR;
NSSizemaxSize

OpenStep Specification—10/19/94

Pointer to state table that specifies word and line breaks

Pointer to state table that defines word boundaries for
double-click selection

Pointer to table that specifies which characters on the left
end of a selection are treated as equivalent to a space

Pointer to table that specifies which characters on the right
end of a selection are treated as equivalent to a space

Pointer to table that maps ASCII characters to character
classes.

Record of notification methods the delegate implements

Function to check each character as it's typed into the text

Function to check text that's being added to the
NSCStringText object

Reserved for internal use

Function that calculates the line of text

Function that draws the line of text

Object that's notified when the NSCStringText object is
modified

Integer the delegate uses to identify the NSCStringText
object

Timed entry number for the vertical bar that marks the
insertion point

Pointer to first record in a linked list of text blocks

Pointer to last record in a linked list of text blocks

Pointer to array of format runs. By defatitteRunspoints
to a single run of the default font

Format run to use for the next characters entered

Pointer to the array of line breaks

Line containing the end of the growing selection

Number of characters in the NSCStringText object

Bottom of the last line of text, relative to the origin of
bodyRect

Widest line of text. Only accurate aftalcLine method is
invoked

Rectangle in which the NSCStringText object draws

Reserved for internal use

Number of clicks that created the selection

Starting position of the selection

Ending position of the selection

Left anchor position

Right anchor position

Maximum size of the frame rectangle

Types and Constant4-297

NSSizeminSize

struct_tFlags{

#ifdef __ BIG_ENDIAN__
unsigned int editMode:2;
unsigned int selectMode2;
unsigned int caretState2;
unsigned inthangeStatel,;

unsigned intharWrap:1;

unsigned inhaveDown1;

unsigned inanchorlsQ:1;
unsigned inhorizResizablel;

unsigned invertResizablel,;

unsigned inbverstrikeDiacriticals:1;

unsigned intnonoFont1;

unsigned intdisableFontPanelil,;

unsigned ininClipView :1;
#else

unsigned ininClipView :1;

unsigned intdisableFontPaneil,;
unsigned intnonoFont1;

unsigned inbverstrikeDiacriticals:1;

unsigned invertResizablel,
unsigned inhorizResizablel;
unsigned inanchorlsQ:1;
unsigned inhaveDown1;
unsigned intharWrap:1;
unsigned inthangeStatel;
unsigned int caretState2;
unsigned int selectMode2;
unsigned int editMode:2;
#endif
} tFlags,
void *_info;
void *_textStr;
} NSCStringTextinternalState;

1-298 Chapter 1: Application Kit

Minimum size of the frame rectangle

Reserved for internal use

Reserved for internal use

Reserved for internal use

True if any changes have been made to the text since the
NSCStringText object became first responder

True if the NSCStringText object wraps words whose
length exceeds the line length on a character basis. False
if such words are truncated at end of line

True if the left mouse button (or any button if button
functions are not differentiated) is down

True if the anchor’s position is g0

True if the NSCStringText object’s width can grow or
shrink

True if the NSCStringText object’s height can grow or
shrink

Reserved for internal use

True if the NSCStringText object uses one font for all its
text

True if the NSCStringText object doesn’t update the font
panel automatically

True if the NSCStringText object is a subview of an
NSClipView

Reserved for internal use
Reserved for internal use

OpenStep Specification—10/19/94

View

typedef intNSTrackingRectTag A unique identifier of a tracking rectangle assigned by
NSView. (SeeaddTrackingRectangle:owner:
assumelnside:)

typedef enum _NSBorderType { Constants representing the four types of borders that can
NSNoBorder, appear around NSView objects.
NSLineBorder,
NSBezelBorder
NSGrooveBorder

} NSBorderType;

enum { NSView uses these autoresize constants to describe
NSViewNotSizable the parts of a view (or its margins) that are resized
NSViewMinXMargin , when the view’s superview is resized.
NSViewWidthSizable,
NSViewMaxXMargin ,
NSViewMinYMargin ,
NSViewHeightSizable
NSViewMaxYMargin

Window

enum { These constants list the window-device tiers that the
NSNormalWindowlLevel =0, Application Kit uses. Windows are ordered (or
NSFloatingWindowLevel = 3, “layered”) within tiers: The uppermost window in one
NSDockWindowlLevel =5, tier can still be obscured by the lowest window in
NSSubmenuWindowLevel = 10, the next higher tier.
NSMainMenuWindowLevel =20

3

enum { Bitmap masks to determine certain window styles.
NSBorderlessWindowMask
NSTitledwWindowMask,
NSClosableWindowMask
NSMiniaturizableWindowMask ,
NSResizableWindowMask

OpenStep Specification—10/19/94 Types and Constant4-299

Size Globals
These global constants give the dimensions of an icon and contained.
NSSizeNSlconSize
NSSizeNSTokenSize

Workspace

Workspace File Type Globals

Identifies the type of file queried by the metlyadinfoForFile:application:type: (passed back by reference in
last argument).

NSString NSPlainFileType

NSString NSDirectoryFileType;
NSString NSApplicationFile Type;
NSString NSFilesystemFileType
NSString NSShellCommandFileType

Workspace File Operation Globals

Used as file-operation arguments in pleeformFileOperation:source:destination:files:options: method (first
argument).

NSString NSWorkspaceCompressOperation
NSString WSWorkspaceCopyOperation
NSString NSWorkspaceDecompressOperatian
NSString NSWorkspaceDecryptOperation
NSString NSWorkspaceDestroyOperation
NSString WSWorkspaceDuplicateOperation
NSString NSWorkspaceEncryptOperation
NSString WSWorkspaceLinkOperation;

NSString WSWorkspaceMoveOperation

1-300

NSString NSWorkspaceRecycleOperation

OpenStep Specification—10/19/94 Types and Constant4-301

1-302 Chapter 1: Application Kit OpenStep Specification—10/19/94

2 Foundation Kit

Introduction

The Foundation Kit defines a base layer of Objective C classes for OpenStep. In addition to providing a set of
useful primitive object classes, it introduces several paradigms that define functionality not covered by the
Objective C language. The Foundation Kit is designed with these goals in mind:

» To provide a set of basic utility classes
» To make software development easier by introducing consistent conventions for things such as deallocation
» To support Unicode strings, object persistence, and object distribution

« To provide a level of operating system independence, enhancing application portability

OpenStep Specification—10/19/94 Introduction: Foundation Kit 2-1

Classes

The Foundation Kit includes the root class for almost all OpenStep classes, classes representing basic data types
such as strings and byte arrays, collections of other objects, and classes representing system information such as
dates. The following diagram shows the inheritance relationship among these classes. After the diagram, the
specifications for these classes are arranged in alphabetical order.

2-2 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSArray NSMutableArray

—| NSAssertionHandler '
NSAutoreleasePool

NSBTreeBlock
NSBTreeCursor
NSBundle

NSByteStore NSByteStoreFile
—| NSCharacterSet !—| NSMutableCharacterSet m

NSConditionLock

NSArchiver

NSUnarchiver

NSConnection

NSData NSMutableData
NSDate NSCalendarDate

NSDeserializer

NSObject Ir NSDictionary NSMutableDictionary

NSEnumerator

i

NSException
NSiInvocation
NSLock
NSMethodSignature

NSNotification

IIIIII{

NSProxy !—| NSDistantObject !

- NSNotificationCenter I

NSNotificationQueue
NSProcesslInfo
NSRecursiveLock
NSRunLoop
NSScanner

NSSerializer

NSSer
NSSiing
NSThread
NSTimeZone
NSTimer

NSUserDefaults

NSValue NSNumber

{FETSu

Figure 2-1. Foundation Kit Classes

OpenStep Specification—10/19/94 Classes: Foundation Kit 2-3

NSArchiver

Inherits From: NSCoder : NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSArchiver.h

Class Description

NSArchiver, a concrete subclass of NSCoder, defines an object that encodes Objective C objects into an
architecture-independent format that can be stored in a file. When objects are archived, their class information and
the values of their instance variables are written to the archive. NSArchiver's companion class, NSUnarchiver, takes
an archive file and decodes its contents into a set of objects equivalent to the original one.

Archiving is typically initiated by sending an NSArchiveremcodeRootObject:or archiveRootObject:toFile:

message. These messages specify a single object that is the starting point for archiving. The root object receives an
encodeWithCoder: message (see the NSCoding protocol) that allows it to begin archiving itself and the other
objects that it's connected to. An object responds tenandeWithCoder: message by writing its instance

variables to the archiver.

An object doesn’t have to archive the values of each of its instance variables. Some values may not be important to
reestablish and others may be derivable from related state upon unarchiving. Other instance variables should be
written to the archive only under certain conditions, as explained below.

NSArchiver overrides the inheriteshcodeRootObject:andencodeConditionalObject: methods to support the
conditional archiving of members of a graph of objects. When an object receamsoaie\WithCoder: message,

it should respond by unconditionally archiving instance variables that are intrinsic to its nature (with the exceptions
noted above) and conditionally archiving those that are not. For example, an NSView unconditionally archives its
array of subviews (usingncodeObiject; or the like) but conditionally archives its superview (using
encodeConditionalObject). The archiving system notes each reference to a conditional object, but doesn't
actually archive the object unless some other object in the graph requests the object to be archived unconditionally.
This ensures that an object is only archived once despite multiple references to it in the object graph. When the
objects are extracted from the archive, the multiple references to objects are resolved, and an equivalent graph of
objects is reestablished.

Initializing an NSArchiver

— (id)initForWritingWithMutableData: (NSMutableData *ndata
Initializes an archiver, encoding stream and version
information into mutable datadata Raises
NSlInvalidArgumentException if th@dataargument is
nil.

2-4 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Archiving Data

+ (NSData *prchivedDataWithRootObject: (id)rootObject
Creates and returns a data object after initializing an
archiver with that object and encoding the archiver with

rootObject
+ (BOOL)archiveRootObject:(id)rootObject ArchivesrootObjectby encoding it as a data object in
toFile:(NSString *path an archiver and writing that data object to filgh

Returns YES upon success.

— (voidencodeArrayOfObjCType:(const char ®ype Encodes amrray of countdata elements of the same
count:(unsigned intyount Objective C dataype
at:(const void *prray

— (void)encodeConditionalObject(id)object Encodes into the linearized data a conditiamigéctthat
points back toward a root object.nit is specified for
object it encodes it asil unconditionally. Raises an
NSlInvalidArgumentException if no root object has
been encoded.

— (void)encodeRootObject(id)rootObject Encodes theootObjectat the start of the linearized data
representing the object graph. Raises an
NSInvalidArgumentException if the root object has
already been encoded.

Getting Data from the NSArchiver

— (NSMutableData *grchiverData Returns the data object, in mutable form, that is associated
with the receiving NSArchiver.

Substituting One Class for Another

— (NSString *gplassNameEncodedForTrueClassNam@\SString *frueName
Returns the class name used to archive instances of the
classtrueName See
encodeClassName:intoClassName

— (void)encodeClassNamégNSString *frueName Encodes in the archive a substitute class name
intoClassName(NSString *jnArchiveNamg for the real class nam#&ieNamé.

OpenStep Specification—10/19/94 Classes: NSArchiver 2-5

NSArray

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class Description

The NSArray class declares the programmatic interface to an object that manages an immutable array of objects.
(The complementary class NSMutableArray manages modifiable arrays of objects.) NSArray’s two primitive
methods—eount andobjectAtindex: —provide the basis for all the other methods in its interfacecdet

method returns the number of elements in the aptggctAtindex: gives you access to the array elements by

index, with index values starting at 0.

The methodebjectEnumerator andreverseObjectEnumeratoralso permit sequential access of the elements of

the array, differing only in the direction of travel through the elements. These methods are provided so that array
objects can be traversed in a manner similar to that used for objects of other collection classes, such as
NSDictionary.

Generally, you instantiate an NSArray by sending one daditfag... messages to the NSArray class object. These
methods return an NSArray containing the elements you pass in as arguments. (Note that arrays canit contain
objects.) These objects aren’t copied; rather, each object recedtagnamessage before it's added to the array.
When an object is removed from an array, it's sesieasemessage.

NSArray provides methods for querying the elements of the artiexOfObject: searches the array for the object

that matches its argument. To determine whether the search is successful, each element of the array is sent an
isEqual: message, as declared in the NSObject protocol. Another matHes(OfObjectldenticalTo:, is

provided for the less common case of determining whether a specific object is present in the array.
indexOfObjectldenticalTo: tests each element in the array to see whethier itgtches that of the argument.

NSArray’smakeObjectsPerform: andmakeObjectsPerform:withObject: methods let you act on the individual
objects in the array by sending them messages. To act on the array as a whole, a variety of methods are defined.
You can create a sorted version of the arsaytédArrayUsingSelector:and

sortedArrayUsingFunction:context:), extract a subset of the arrapbarrayWithRange:), or concatenate the
elements of an array of NSString objects into a single strimggonentsJoinedByString). In addition, you can
compare two array objects using tkEqualToArray: andfirstObjectCommonWithArray: methods.

2-6 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Allocating and Initializing an Array

+ (id)allocWithZone:(NSZone *fone Returns an uninitialized array objectzane
+ (id)array Returns an empty array object
+ (id)arrayWithObject: (id)anObject Returns an NSArray containing the single element

anObject Raises an NSinvalidArgumentExceptibn
anObjectis nil.

+ (id)arrayWithObjects: (id)firstObj,... Returns an NSArray containing the objects in the argument
list. The object list is comma-separated and ends with
nil.

— (NSArray *jarrayByAddingObiject: (id)anObject Returns an NSArragontaining the receiver’s elements
plusanObject

— (NSArray *arrayByAddingObjectsFromArray: (NSArray *)anotherArray
Returns an NSArray containing the receiver’s elements
plus the elements fromnotherArray

— (id)initwithArray: (NSArray *)anotherArray Initializes a newly allocated array object by placing in it the
objects contained ianotherArray.

— (id)initWithObjects: (id)firstObj,... Initializes a newly allocated array object by placing in it the
objects in the argument list. The object list is
comma-separated and ends with Raises an
NSInvalidArgumentExceptioifi any object in the ligtf

objects isil.
— (id)initwithObjects: (id *)objects Initializes a newly allocated array object by placing in
count:(unsigned intyount it countobjects from th@bjectsarray
Querying the Array
— (BOOL)ontainsObject:(id)anObject Returns YES ifinObjectis present in the array.
— (unsigned inount Returns the number of objects currently in the array.
— (unsigned inthdexOfObject: (id)anObject Returns the index afnObject if found; otherwise, returns

NSNotFound. This method checks the elements in the
array from last to first by sending themisBqual:
message.

— (unsigned inthdexOfObjectldenticalTo: (id)anObject
Returns the index afhObject if found; otherwise, returns
NSNotFound. This method checks the elements in the
array from last to first by comparing thais.

— (id)lastObject Returns the last object in the array.

OpenStep Specification—10/19/94 Classes: NSArray 2-7

— (id)objectAtindex: (unsigned inihdex Returns the object locatediatlex An array’s index starts
at 0. Raises an NSRangeExceptiomdfexis beyond
the end of the array.

— (NSEnumerator bjectEnumerator Returns an enumerator object that lets you access each
object in the array, starting with the first element.

— (NSEnumerator tgverseObjectEnumerator Returns an enumerator object that lets you access each
object in the array, from the last element to the first.

Sending Messages to Elements

— (void)makeObjectsPerform(SEL)aSelector Sends amSelectomessage to each object in the array.
— (void)ymakeObjectsPerform(SEL)aSelector Sends amaSelectormessage to each object in the
withObject: (id)anObject array, withanObjectas an argument.

Comparing Arrays

— (id)firstObjectCommonWithArray: (NSArray *JotherArray
Returns the first object from the receiver’s array that's
equal to an object intherArray

— (BOOL)sEqualToArray: (NSArray *)otherArray Compares the receiving array objecbtberArray

Deriving New Arrays

— (NSArray *sortedArrayUsingFunction: (int(*)(id elementlid element2void *userDatg)comparator
context:(void *)context Returns an array listing the receiver’s elements in
ascending order as defined by the comparison function
comparator contextis passed to the comparator
function as its third argument.

— (NSArray *sortedArrayUsingSelector{SEL)comparator
Returns an array listing the receiver’s elements in
ascending order, as determined by the comparison
method specified by the selectmmparator

— (NSArray *subarrayWithRange:(NSRangelange Returns an array containing the receiver’s elements that fall
within the limits specified byange

Joining String Elements

— (NSString *romponentsJoinedByString{NSString *separator
Returns a string that's the result of interposiegarator
between the elements of the receiver’s array.

2-8 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Creating a String Description of the Array

— (NSString *Hescription Returns a string object that represents the contents of the
receiver.

— (NSString *lescriptionWithLocale: (NSDictionary *JocaleDictionary
Returns a string representation of the NSArray object.
Included are the key and values that represent the locale
data fromlocaleDictionary

— (NSString *fescriptionWithLocale:(NSDictionary *JocaleDictionary
indent: (unsigned intevel Returns a string representation of the NSArray object.
Included are the key and values that represent the locale
data fromlocaleDictionary Elements of the array are
indented from the left margin bgvel+ 1 multiples of
four spaces, to make the output more readable.

OpenStep Specification—10/19/94 Classes: NSArray 2-9

NSAssertionHandler

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSExceptions.h

Class Description

An assertions a statement about conditions during the execution of program code, such as the relationship between
variables, the state of a boolean variable, the value of an expression, and so on. If the statement about the conditions
proves false, the assertion is said to have failed, and usually some action must be taken to report the failed assertion.
Application programmers wishing to provide more detailed control over assertion failures than provided by the
macros defined below would use the methods of NSAssertionHandler to report assertion failures.

NSAssertionHandler provides a mechanism whereby each distinct thread of execution can have a separate handler
to deal with failed assertions in code. TieNameandline arguments to the methods described below can be
obtained by usingthe FILE__ and__LINE__ macros that are pre-defined in the C pre-processor.

TheFoundation/NSExceptions.rheader file contains a collection of macros that can be used to state assertions
within methods, and contains a parallel collection of macros that can be used to state assertions within regular C
functions. If the condition tested in any of these macros fails, the current assertion handler is invoked with one of
the methods defined below, depending on whether the macro is one of the NSAssertN or one of the NSCAssertN
macros. Separate macros have from 1 to 5 arguments. Macros for dealing with assertion failures within methods
are:

NSAssertl(condition , description , argument 1);

NSAssert2(condition , description , argument 1, argument 2);

NSAssert3(condition , description , argument 1, argument 2, argument 3);

NSAssert4(condition , description , argument 1, argument 2, argument 3, argument 4);

NSAssert5(condition , description , argument 1, argument 2, argument 3, argument 4, argument 5);

In each casesonditionis the statement to be tested (for examipléex < length), descriptionis a description of
the reason for the failure (in the form of a printf-style format NSString), andaegidlis an argument to be
formatted according to treescriptionstring.

The parallel set of macros for dealing with failed assertions from within C functions have names of the form
NSCAssertN instead of NSAssertN. The arguments are otherwise the same as the NSAssertN macros.

Getting the Current Handler

+ (NSAssertionHandler turrentHandler Returns the assertion handler for the current thread.

2-10 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Handling Failures

— (voidhandleFailurelnFunction: (NSString *functionName

file:(NSString *fileName Logs an error message that inclutlesctionName
lineNumber:(int)line the sourcdile fileNameand thdine number where
description:(NSString *format,... the failure occured; and a short description of the

failure, described bformat It then raises an
NSInternallnconsistencyException.

— (voidhandleFailureInMethod: (SEL)selector Logs an error message that includes the metbelddto)
object:(id)object andobjectassociated with the failure;
file:(NSString *¥ileName the source fildileNameand
lineNumber:(int)line line number in that file where the failure occured;
description:(NSString *format,... and a short description of the failure, described by

format It then raises an
NSiInternallnconsistencyException.

OpenStep Specification—10/19/94 Classes: NSAssertionHandler2-11

NSAutoreleasePool

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSAutoreleasePool.h

Class Description

The Foundation Kit uses the NSAutoreleasePool class to implement NSCljgotsleasemethod. An
autorelease pool simply contains other objects, and when deallocated, sdadsamessage to each of those
objects. An object can be put into the same pool several times, and recelees@message for each time it was
put into the pool.

You use autorelease pools to limit the time an object remains valid after it's been “autoreleased” (that is, after it’s
been sent aautoreleasemessage or has otherwise been added to an autorelease pool). Autorelease pools are
created using the usualoc andinit messages, and disposed of wilease An autorelease pool should always

be released in the same context (invocation of a method or function, or body of a loop) that it was created. You
should never senetain or autoreleasemessages to an autorelease pool.

Autorelease pools are automatically created and destroyed in OpenStep applications, so your code normally doesn’t
have to worry about them. There are two cases, though, where you should explicitly create and destroy your own
autorelease pools. If you're writing a program that's not based on the Application Kit, such as a UNIX tool, there’s
no built-in support for autorelease pools; you must create and destroy them yourself. Also, if you need to write a
loop that creates many temporary objects, you should create an autorelease pool in the loop to prevent too long a
delay in the disposal of those objects.

Enabling the autorelease feature in a program that's not based on the Application Kit is easy. Many programs have
a top-level loop where they do most of their work. To enable the autorelease feature you create an autorelease pool
at the beginning of this loop and release it at the endwuareleasemessage sent in the body of the loop
automatically puts its receiver into this pool. Thain() function might look like this:

2-12 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

int main(int argc, char *argv[])

{

inti;

/* Do whatever setup is needed. */

for (i=0; i< argc; i++) {
NSAutoreleasePool *pool;
NSString *fileContents;

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

fileContents = [[[NSString alloc] initWithContentsOfFile:argv[i]] autorelease];
processFile(fileContents);

[pool release];

}

/* Do whatever cleanup is needed. */
exit(EXIT_SUCCESS);
}

Any object autoreleased inside foe loop, such as thfideContentsstring object, is added pmol, and wherpool
is released at the end of the loop those objects are also released.

Note that autoreleasing doesn'’t work outside of the loop. This isn’t a problem, since the program terminates shortly
after the loop ends, and memory leaks aren’t usually serious at that stage of execution. Your cleanup code shouldn’t
refer to any objects created inside the loop, though, since they may be autoreleased in the loop and therefore
released as soon as it ends.

Nesting Autorelease Pools

You may need to manually create and destroy autorelease pools even in an application that uses the Application Kit
if you write loops that create many temporary objects. For example, if you write a loop that iterates 1000 times and
invokes a method that creates 15 temporary objects, those 15,000 objects will remain until the application’s
autorelease pool is deallocated, possibly well after they're no longer needed.

You can create your own autorelease pools within the loop to prevent these unwanted objects from remaining
around. Autorelease pools nest themselves on a per-thread basis, so that if you create your own pool, it adds itself
to the application’s default pool, forming a stack of autorelease pools. Likewise, if you create another pool (within

a nested loop, perhaps), it adds itself to the first pool you createdeleaseautomatically adds its receiver to the

last pool created, creating a nesting of autorelease contexts. The implications of this are described below.

OpenStep Specification—10/19/94 Classes: NSAutoreleasePod-13

A method that creates autorelease pools looks much likedh®) function given above:

- (void)processString:(NSString *)aString
{

inti;

for (i = 0; i <1000; i++) {
NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];
NSString *thisLine;

thisLine = [self lineNumbered:i fromString:aString];
* Do some work with thisLine. */
[subpool release];

}

return;

}

If you assume thdineNumbered:fromString: returns a string object that's been autoreleased silpoolis in

effect, that object is released wihbpoolat the end of the loop. The work involvitigsLine may create other
temporary objects, which are also released at the end of the loop. None of these objects remains outside of this loop
or theprocessString:method (unless they've been retained).

Note that because an autorelease pool adds itself to the previous pool when created, it doesn’t cause a memory leak
in the face of an exception or other sudden transfer out of the current context. If an exception occurs in the above
loop, or if the work in the loop involves immediately returning or breaking out of the loop, the sub-pool is released

by the application’s default pool (or whatever pool was in effect before the sub-pool was created), “unwinding” the
autorelease-pool stack up to the one that's supposed to be active.

Guaranteeing the Foundation Ownership Policy

By manually creating an autorelease pool, you reduce the potential lifetime of temporary objects to the lifetime of
that pool. After an autorelease pool is deallocated, you should regard as “disposed of” any object that was
autoreleased while that pool was in effect, and not send a message to that object or return it to the invoker of your
method. This method, for example, is incorrect:

— findMatchingObject:anObject
{

id match = nil;
while (match == nil) {
NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

/* Do some searching that creates a lot of temporary objects.*/

match = [self expensiveSearchForObject:anObject];
[subpool release];

}

/* Danger!! The match object may not exist at this point! */
[match setlsMatch:YES forObject:anObject];

return match;

2-14 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

expensiveSearchForObjectis invoked whilesubpoolis in effect, which means thaatch, which may have been
autoreleased, is released at the bottom of the loop. Seswtisiylatch:forObject: after the loop could cause the
application to crash. Similarly, returnimgatch allows the sender dindMatchingObject: to send a message to
it, also causing your application to crash.

If you must pull a temporary object out of a nested autorelease context, you can do so by retaining the object within
the context and then autoreleasing it after the pool has been released. Here’s a correct implementation of
findMatchingObject: :

— findMatchingObject:anObject
{

id match = nil;
while (match == nil) {
NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

/* Do a search that creates a lot of temporary objects. */

match = [self expensiveSearchForObject:anObject];
if (match != nil) [match retain]; /* Keep match around. */
[subpool release];

}
[match setlsMatch:YES forObject:anObject];

return [match autorelease]; /* Let match go and return it. */

}

By retainingmatch while subpoolis in effect and autoreleasing it after fubpoolhas been releasadatch is
effectively moved fronsubpoolto the pool that was previously in effect. This gives it a longer lifetime and allows
it to be sent messages outside the loop and to be returned to the invioldivatchingObject: .

General Exception Conditions

An NSinvalidArgumentException is raised on any attempt to send edéta#n or autoreleasemessages to an
autorelease pool object.

Adding an Object to the Current Pool
+ (void)addObiject:(id)anObject AddsanObijectto the active autorelease pool in the current

thread.

Adding an Object to a Pool
— (void)addObject:(id)anObject AddsanObijectto the receiver.

OpenStep Specification—10/19/94 Classes: NSAutoreleasePod-15

NSBT reeBlock

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

An NSBTreeBlock provides ordered, associative storage and retrieval of untyped data. It identifies and orders data
items, calledralues by key using a comparator function. A companion class, NSBTreeCursor, actually

manipulates the contents of the NSBTreeBlock; NSBTreeBlock only provides the mechanisms for storing and
sorting the key/value pairs.

Setting Up an NSBTreeBlock

An NSBTreeBlock can be used with either a memory-based NSByteStore or an NSByteStoreFile. The
NSByteStore holds the contents of the NSBTreeBlock. Use NSBTreeBlock with NSByteStoreFile to build
persistent databases. An NSBTreeBlock is initialized as a new client of an NSByteStore using the method
initWithStore: orinitWithStore:block: . The NSBTreeBlock takes up one block in the NSByteStore per key/value
pair and one block for each node in the tree. An NSBTreeBlock will always take up at least one block in the
NSByteStore.

After the NSBTreeBlock has been initialized, it must have its comparator function set with the
setComparator:context.. A comparator function takes as arguments two pieces of arbitrary data and their lengths
and returns an integer indicating their ordering relative to one another. A comparator function is of type
(NSBTreeComparator *), which has the form:

typedef int NSBTreeComparator(NSData * datal , NSData * data2 , const void * context)

wheredatalanddata?are pointers to data andntextis a pointer to blind data that may be used by the comparator
function. The comparator function returns a number less thashafeitis considered less thaiata2 greater than

0 if datalis considered greater thdata2 and equal to O ilatalanddata?are considered equal. By default,
NSBTreeBlocks compare keys as strings.

Getting Data Into and Out of an NSBT reeBlock

As stated above, NSBTreeBlock simply provides the capacity for associative storage. An NSBTreeCursor is needed
to take advantage of that capacity. An NSBTreeCursor is like a pointer into the NSBTreeBlock: It can move to
specific positions within the key space and perform operations on the values stored at those locations, independent
of other cursors. See the NSBTreeCursor class description for more information.

2-16 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Multiple NSBTreeCursors may independently access a single NSBTreeBlock. The actions of one cursor don'’t
affect any of the other cursors in the NSBTreeBlock, except to the extent that they modify the contents of the
NSBTreeBlock. It is both safe and meaningful to remove a record that another NSBTreeCursor has just located, as
long as the code using the other NSBTreeCursor anticipates this possibility, as described below.

In the case of one cursor removing a value that another cursor has just located, the second cursor will have received
an indication from a key-locating method (for exampieyeCursorToKey:) that it has found a key. When it tries

to access the value associated with that key, however, the key may no longer exist. The cursor will detect the
deletion and slide forward to the next available key if asked to read the value, or it will raise an exception if asked
to remove or write the value. If your code allows multiple cursors to be concurrently active in a single
NSBTreeBlock, it must anticipate this behavior by handling the exceptions that may be raised and by comparing
the key against the expected value after invokingorKey. If one cursor is pointed at a key and a second cursor
removes or adds a key at a different location, it does not change the position of the first cursor.

Working With the NSByteStore

Since NSBTreeBlock is an NSByteStore client, the transaction model of NSByteStore applies to changes made to
the contents of an NSBTreeBlock. In particular, you must sencbthenitTransaction message to the

NSByteStore to have changes to the NSBTreeBlock take effect (and be flushed to disk for a file-based store). If an
NSBTreeBlock is used on a strictly read-only basis, transaction management can be ignored.

After anabortTransaction, a cursor may be pointing to a key that no longer exists. Therefore, you must reposition
each cursor using one of theveCursor...methods after aabortTransaction.

Creating and Initializing a New NSBT reeBlock Instance

+ (NSBTreeBlock *htreeBlockWithStore: (NSByteStore *aStore
Returns a new NSBTreeBlock instance in the designated
NSByteStore.

+ (NSBTreeBlock *htreeBlockWithStore: (NSByteStore *aStore
block: (unsignedaBlock Returns a new NSBTreeBlock instance in the designated
NSByteStore wittaBlockas the root block of the
NSBTreeBlock. IfaBlockdoes not exist or is invalid,
the NSBTreelnitException is raised.

— (id)initWithStore: (NSByteStore *aStore
Initializes a newly allocated NSBTreeBlock instance in the
designated NSByteStore.

— (id)initwithStore: (NSByteStore *aStore
block: (unsignedjBlock Initializes a newly allocated NSBTreeBlock instance in the
designated NSByteStore wigtBlockas the root block
of the NSBTreeBlock. 1&Blockdoes not exist or is
invalid, the NSBTreelnitException is raised.

OpenStep Specification—10/19/94 Classes: NSBTreeBlock2-17

Accessing Information About the NSByteStore

— (NSByteStore #)yteStore Returns the NSByteStore associated with the
NSBTreeBlock.
— (unsignedgtoreBlock Returns the number of the NSByteStore block that contains

the root of the NSBTreeBlock.

Setting the Comparator

— (void)setComparator:(NSBTreeComparator Epmparator
context:(const void *pontext Sets the comparison method. The default is string
comparison. When a value is inserted in the
NSBTreeBlock, the comparator function decides where
to put it. For more information, see the class

description.
Accessing NSBTreeBlock information
— (unsignedjount Returns the number of key/value pairs stored in the
NSBTreeBlock.
Affecting NSBTreeBlock Contents
— (voidyemoveAllObjects Removes all key/value pairs from the NSBTreeBlock.

2-18 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSBT reeCursor

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

An NSBTreeCursor provides access to the keys and values stored in an NSBTreeBlock. It's essentially a pointer
into the NSBTreeBlock’s key space, and may be positioned by key to perform operations on the value stored at a
given location.

An NSBTreeCursor works with a single NSBTreeBlock, but several NSBTreeCursors may access the same
NSBTreeBlock and be positioned independently without conflict. See the NSBTreeBlock class specification for
more information on concurrent access with multiple NSBTreeCursors.

Positioning the Cursor and Accessing Data

NSBTreeCursor contains methods that walk through the key/value pairs in the NSBTreeBlock. The method
moveCursorToFirstKey will point the cursor to the first key in the key space, and you can use
moveCursorToNextKeyto essentially walk through all of the keys in the NSBTreeBlock. To point the cursor at a
specific key/value pair, usgoveCursorToKey:. This method returns YES if it finds the key and NO if it does not.

If moveCursorToKey: returns NO, it still points the cursor at that key. For example, suppose the keys into the key
space are integer IDs divisible by 10, and youmaleCursorToKey: with 54 as the key. (In reality, keys must

be NSData objects, but to make this example more clear, it uses integers.) There is no key 54, so
moveCursorToKey: returns NO, but the cursor points to where key 54 would be if it existed. A subsequent call to
moveCursorToNextKeywould point the cursor at key 60. The metisf@nKey tells you if the cursor is pointing

to a valid key.

To insert a key/value pair into the NSBTreeBlock, you take advantagerobtreCursorToKey: method’s return
value. SenanoveCursorToKey: with the key you want to insert. If if returns NO, seniteValue: with the value
you want to insert. The key/value pair will be inserted.

A cursor at a position with no key can't access a value there. If the cursor is asked to access a value anyway, it has
two options: try to find a value or indicate that it can’t access one. Where it makes sense, a cursor should try to find
a value by sliding forward in the key space to the next actual key. When this isn’t possible or desirable, the cursor
should indicate that it can’t find or access a value, by raising the NSBTreeNoValueException exception. In the
previous example, if the cursor is asked to retrieve the information at key 54, the cursor will slide forward and return
the information at key 60. At this point, you can useciirsorKey method to find out which key the cursor is

pointing to.cursorKey will return 60 to let you know that the cursor has slid forward.

OpenStep Specification—10/19/94 Classes: NSBTreeCursor2-19

A cursor cannot write inside (with the methwdteValue:range:) or remove the value (with the method

removeValug at a location where there is no key. Since there is no value, and since writing into part of a value or
removing it would change data that the programmer probably doesn’'t want altered (namely, the value for the next
actual key), the NSBTreeCursor will indicate that there is no value to write into by raising the
NSBTreeNoValueException exception.

Working With the NSByteStore

Since NSBTreeBlock is an NSByteStore client, the transaction model of NSByteStore applies to changes made to
the contents of an NSBTreeBlock. In particular, you must sencbthenitTransaction message to the

NSByteStore to have changes to the NSBTreeBlock take effect (and be flushed to disk for a file-based store). If an
NSBTreeBlock is used on a strictly read-only basis, transaction management can be ignored.

After anabortTransaction, a cursor may be pointing to a key that no longer exists. Therefore, you must reposition
each cursor using one of theveCursor...methods after aabortTransaction.

Creating and Initializing a New NSBT reeCursor Instance

+ (NSBTreeCursor Y)TreeCursorWithBTree: (NSBTreeBlock *aBTre2
Returns a new NSBTreeCursor instance and associates it
with theaBTreeobject.

— (id)initwithBTree: (NSBTreeBlock *aBTree Initializes a newly allocated NSBTreeCursor instance and
associates it with theBTreeobject.

Obtaining Information about the NSBTreeBlock

— (NSBTreeBlock *ptree Returns the NSBTreeBlock with which the
NSBTreeCursor is associated.

Positioning the Cursor

— (BOOL)moveCursorToFirstKey Positions the cursor at the first key in the key space.

— (BOOL)moveCursorTolLastKey Positions the cursor at the last key in the key space.

— (BOOL)moveCursorToNextKey Positions the cursor at the next key in the key space. If the
cursor is at the last key, it does not move.

— (BOOL)moveCursorToPreviousKey Positions the cursor at the previous key in the key space. If
the cursor is at the first key, it does not move.

— (BOOL)moveCursorToKey:(NSData *key Positions the cursor &y

—(BOOL)isOnKey Returns YES if the cursor matched a key on the last
operation.

2-20 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Accessing the Data

— (NSData *fursorKey Returns the key that the cursor is pointing to.
— (NSData *gursorValue Returns the value associated with the key that the cursor is
pointing to.

— (NSData *ursorValueWithRange:(NSRangeange
Returns a portion, specified lnge of the value

associated with the key that the cursor is pointing to.

Changing the Data in the NSBTreeBlock

— (BOOLwriteValue: (NSData *yalue Replaces the value associated with the key that the cursor
is pointing to, if the key exists. If the key does not exist,
it creates a new key/value pair using the key that the
cursor is currently pointing to andlueas the value.

This method returns YES if it inserted a new key/value
pair and NO if it overwrote an existing value.

— (voidwriteValue: (NSData *yvalue Replaces a portion, startingmadex of the value associated
atindex: (unsignedindex with the key that the cursor is pointing to. If the key
does not exist, the NSBTreeNoValueException
exception is raised.

— (voidyemoveValue Deletes the key/value pair from the NSBTreeBlock. If the
key/value pair already does not exist, the
NSBTreeNoValueException exception is raised.

OpenStep Specification—10/19/94 Classes: NSBTreeCursor2-21

NSBundle

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSBundle.h

Class Description

A bundleis a mechanism for grouping applicati@sourcesnto convenient chunks. A typical (but by no means
the only) application of a bundle is to group executable code together with the resources used by that executable
code. A major use of bundles is to handle localization issues, as described below in “Localized Resources”.

An NSBundle is an object that corresponds to a directory (or folder in the terminology of some operating systems)
where application resources are stored. The directory, in essence, “bundles” a set of resources used by an
application, and the NSBundle object makes those resources available to the application. NSBundle is able to find
requested resources in the directory and, in some cases, dynamically load executable code. The term “bundle” is
used both for the object and for the directory it represents.

Bundled resources might include such things as:
» Images—TIFF or EPS (for instance) images used by an application’s user interface components
* Sounds
» Localized character strings
+ Executable code

» User Interface resources—files describing the layout of user interface objects and their relationships with
other objects

Each resource within a bundle usually resides in a separate file.

Localized Resources

If an application is to be used in more than one part of the world, its resources may need to be customized, or
“localized”, for language, country, or cultural region. An application may need, for example, to have separate
Japanese, English, French, Hindi, and Swedish versions of the character strings that label menu commands.

2-22 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Resource files specific to a particular language are grouped together in a subdirectory of the bundle directory. The
subdirectory has the name of the language (in English) followed by a “.Iproj” extension (for “language project”).
The application mentioned above, for example, would Bapanese.lproj English.lproj, French.lproj,

Hindi.lproj , andSwedish.lproj subdirectories.

Each “.Iproj” subdirectory in a bundle has the same set of files; all versions of a resource file must have the same
name.

The Main Bundle

Every application is considered to have at least one bundleraitsbundle—the directory where its executable
file is located. If the application is organized into a file package marked by a “.app” extension, the file package is
the main bundle.

Other Bundles

An application can be organized into any number of other bundles in addition to the main bundle. For example, an
application for managing PostScript printers may have a bundle full of PostScript code to be downloaded to
printers.These other bundles usually reside inside the application file package, but they can be located anywhere in
the file system. Each bundle directory is represented in the application by a separate NSBundle object.

By convention, bundle directories other than the main bundle end in a “.bundle” extension.

Dynamically Loadable Classes

Any bundle directory can contain a file with executable code. For the main bundle, that file is the application
executable that's loaded into memory when the application is launched. The executable in the main bundle includes
themain() function and other code necessary to start up the application.

Executable files in other bundle directories hold class (and category) definitions that the Bundle object can
dynamically load while the application runs. When asked, the Bundle returns class objects for the classes (and
categories) stored in the file. It waits to load the file until those classes are needed.

By using a number of separate bundles, you can split an application into smaller, more manageable pieces. Each
piece is loaded into memory only when the code being executed requires it, so the application can start up faster
than it otherwise would. And, assuming users will rarely exercise every part of an application, the application will
also consume less memory as it runs.

The file that contains dynamically loadable code must have the same name as the bundle directory, but without the
“.bundle” extension.

Since each bundle can have only one executable file, that file should be kept free of localizable content. Anything
that needs to be localized should be segregated into separate resource files and stored in “.Iproj” subdirectories.

OpenStep Specification—10/19/94 Classes: NSBundle 2-23

Working with Bundles

Generally, you instantiate a bundle object by sending one blti#ieForClass; bundleWithPath:, or
mainBundle methods to the NSBundle class objetainBundle gives you the NSBundle object corresponding
to the directory containing the application’s executable.

Initializing an NSBundle

— (id)initwithPath: (NSString *path Initializes a newly allocated NSBundle object to make it
the NSBundle for thpathdirectory.

Getting an NSBundle

+ (NSBundle *pundleForClass{ClassaClass Returns the NSBundle object that dynamically loaded
aClass or the main bundle objectafClasswasn'’t
dynamically loaded.

+ (NSBundle *pundleWithPath: (NSString *path Returns an NSBundle object that’s initialized for piagh
directory.

+ (NSBundle *JnainBundle Returns the NSBundle object that corresponds to the
directory where the application executable is located.

Getting a Bundled Class

— (ClassglassNamed{NSString *lassName Returns the class object for tblassNamelass, onil if
classNamasn’'t one of the classes associated with the
receiver.

— (ClassprincipalClass Returns the class object for tiirst class that's dynamically

loaded by the NSBundle, ail if the NSBundle can't
dynamically load any classes.

Finding a Resource

+ (NSString *pathForResource(NSString *name Returns the path for the resource identifiechagne

of Type:(NSString *ext having the specified filenanest,
inDirectory: (NSString *pundlePath residing inbundlePath,
withVersion: (int)version and having version numbeersion

— (NSString *pathForResource(NSString *name Returns the path for the resource identifiechégne
of Type:(NSString *ext having the specified filename extensex

2-24 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Getting the Bundle Directory
— (NSString *pundlePath

Stripping Symbols
+ (void)stripAfterLoading: (BOOL)flag

Managing Localized Resources

Returns a string containing the full pathname of the
receiver’s bundle directory.

Sets whether symbols are stripped when modules are
loaded. The default is YES. You would usually ftzg
to NO for debugging purposes.

— (NSString *JocalizedStringForKey:(NSString *key

value:(NSString *Vvalue
table:(NSString *YableName

Setting the Version

— (unsignedjundleVersion

— (void)setBundleVersion{unsignedyersion

OpenStep Specification—10/19/94

Returns a localized version of the string designated by
keyableNamespecifies the string table to search; if
tableNameés NULL, the fileLocalizable.stringsis
used.valuespecifies the value to return if the key or
table can't be found (or Keyis NULL).

Returns the version last set by geBundleVersion:
method, or O if no version has been set.

Sets the version that the NSBundle will use when searching
“.Iproj” subdirectories for resource files.

Classes: NSBundle 2-25

NSByteStore

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

An NSByteStore object manages a single memory-based heap. Use NSByteStore to allocate storage in
data-intensive applications. Its main feature is transaction management, which makes compound operations atomic
and ensures data integrity.

You address the blocks of storage that an NSByteStore manages through unsigned integers called block numbers.
To gain access to the contents of a block, you first must open the block for reading or writing. When you open a
block, the NSByteStore resolves the block number into a pointer. While a block is open, you can address its
contents using the pointer and can safely assume that the block won’t move. Once you close the block, however,
the NSByteStore is free to move it in order to compact storage; so the pointer may become invalid.

The contents of an NSByteStore are relocatable to and from other instances of NSByteStore and its subclasses.
Although the address of a block becomes invalid when the block is relocated, its block number remains constant.
Since block numbers are indirect references to data, it's possible to retrieve the contents of an NSByteStore without
invalidating block number-based referential data structures residing in the NSByteStore, like linked lists or trees.
This makes it easy to copy complex structures or to quickly save them to a file.

A subclass of NSByteStore, NSByteStoreFile, stores data in a file so that you can retain data created and changed
by your application. For more information, see its class description.

Transactions

NSByteStore implementsansactionsallowing several operations to be grouped together in such a way that either

all of them take effect, or none of them do. Transactions help to ensure semantic integrity by making compound
operations atomic, and they provide a convenient way to undo a series of changes. If you use NSByteStoreFile, the
use of transactions also ensures data integrity against process and system crashes. This means that if a system loses
power, the NSByteStoreFile’s contents can be recovered intact on power up, in the state they were in after the last
transaction that actually finished.

Transactions are either enabled or disabled for an object. Most likely, you will want to disable transactions for
NSByteStores (unless you want the undo capability) and enable them for NSByteStoreFiles. When transactions are
enabled, NSByteStore copies blocks that your application opens for writing. Thus, updates are slower when
transactions are enabled. If you are using NSByteStore directly, its contents are always destroyed by a system crash,
so the only advantage to using transactions is the undo capability. If you are using NSByteStoreFile, enabling
transactions may save some of the changes made before a system crash. Therefore, you should always use
transactions with NSByteStoreFile except if it contains data that can be easily reconstructed, such as an index.

2-26 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Using Transactions

A single transaction begins withstartTransaction message and ends with eitheroanmitTransaction or
abortTransaction messagestartTransaction enables transactions if they are disabled. Sending
commitTransaction means you want the changes made by this transaction to takeadffetIransaction means
you want to cancel the changes made by this transaction.

You can check whether transactions have been enabledreiitansactionsEnabled You may want to do this if

your code is invoked by higher level methods that determine the transaction management policy for the application.
For example, NSByteStore usee TransactionsEnabledto determine whether or not to invaitartTransaction

before responding to ampty message.

You can nest transactions. The fetrtTransaction message (or the first message that opens a block after
enableTransaction3 starts transaction 1. If you sestdrtTransaction again before ending transaction 1, it begins
transaction 2, which is nested inside transaction 1n€kéngLevelmethod returns the current nesting level of
transactionsstartTransaction also returns the nesting level as the transaction’s ID.

The trick with nesting transactions the changes a transaction makes aren’t really made until the nesting level
returns to O In other words, changes don'’t actually take effect until the top-level transaction is committed. This
means that any blocks that any of the transactions have opened for writing will not be available until the all of the
transactions are finished. So, if you start a transaction at nesting level 2, make some changes to blocks 3, 5, and 7,
and then you sencbmmitTransaction, all thatcommitTransaction really does is set the nesting level to 1 and

tell transaction 1 about the changes to blocks 3, 5, and 7. If you theassemdtTransaction at transaction 1,
commitTransaction sets the nesting level to 0. Because the nesting level is now 0, the changes can take place.
Blocks 3, 5, and 7 are overwritten with the changes made during transaction 2 and are made available. If instead
you decide to abort transaction 1 (by sendibgrtTransaction), the changes transaction 2 made to blocks 3, 5,

and 7 are cancelled, as well as any changes transaction 1 made to any blocks. In this way, the parent of a transaction
can undo changes made by their children, but the children cannot undo the changes made by their parents.

Note that if your code makes changes outside any transaction while transactions are enabled, an enclosing
transaction is started automatically. The next invocatiaastTransaction, if any, before an intervening abort or
commit, simply picks up this enclosing transaction and reports a nesting level of 1. Thus, if nesting isn't needed,
your code can simply enable transactions initially with a paitastTransaction/commitTransaction messages,

and thereafter use ontpmmitTransaction to mark transaction boundaries. New transactions implicitly begin

with the first modification following each commit.

Any modifications that haven’t been committed are aborted when an NSByteStore is freed.

Opening Blocks for Reading or Writing
When you open a block for reading or writing, that block is unavailable until you specify that you are finished.

When you are finished reading a block, you sgaseBlock: Any method that accesses information about a block
opens it for reading. This means not only dee&iBlock:range: open a block for reading, but so does

sizeOfBlock:, which returns the block’s size. TbepyBlock: method opens the block for reading, but it also closes

it when finished (unless you already had that block opened for reading). Even if you commit a transaction before
you senctloseBlock; the block remains open for reading.

OpenStep Specification—10/19/94 Classes: NSByteStore2-27

Any method that changes a block’s contents opens the block for writing. This means not only does
openBlock:range:open a block for writing, but so do the methodpyBytes:toBlock:range;

createBlockOfSize; andfreeBlock:. You indicate that you are finished with a block you have open for writing by
having its changes take effect. Closing the block wlitseBlock:doesnot make your changes take effemten if
transactions are disabledRegardless of whether transactions are enabled or disabled, you must send
commitTransaction to have your changes actually be made.

If transactions are disablechmmitTransaction commits all the changes made to blocks since that last
commitTransaction or abortTransaction message was seabortTransaction cancels all the changes made

since the lastommitTransaction.

Creating an NSByteStore
+ (NSByteStore MyteStore

Managing the NSByteStore

— (unsignedjount

— (voidempty

— (void)getBlocks{unsigned *blocks

— (unsignedpotBlock

Creating, Copying, and Freeing Blocks

— (unsignedyreateBlockOfSize(unsignedize
— (unsignedjopyBlock:(unsignedaBlock

range:(NSRangernge

— (void)reeBlock:(unsignedaBlock

2-28 Chapter 2: Foundation Kit

Returns a new NSByteStore with transactions disabled.

Returns the number of blocks in the NSByteStore at
transaction level 0. That is, if you have created or freed
some blocks but those changes have not been
committed at transaction level @unt will not reflect
those changes.

Frees all blocks of memory in the NSByteStore. If
transactions are enabled, this method starts and
commits a new transaction.

Returns irblocksa C-style array of block numbers at
transaction level 0. The caller must free the returned
array.

Returns the number of the root block, which by convention
is used as a table of contents or a directory.

Returns a block number for a new bloclsiziebytes with
the contents initialized to zero. Creating a block with
size O is allowed.

Returns a block number for a new block whose size and
contents are identical to the memory region in block
aBlockspecified byange

Removes and frees the bloaBlock

OpensStep Specification—10/19/94

Opening and Closing Blocks

— (void *)openBlock:(unsignedaBlock
range:(NSRangeange

— (const void *jeadBlock:(unsignedaBlock
range:(NSRangernge
— (voidxloseBlock{unsignedaBlock
Managing Block Sizes
— (voidyesizeBlock(unsignedaBlock
toSize(unsigned3ize

— (unsignedjizeOfBlock:(unsignedaBlock

Using Transactions

— (unsignedgtartTransaction

— (void)abortTransaction

— (void}commitTransaction

— (BOOL)areTransactionsEnabled

— (unsigned)estingLevel

— (unsigned)hangeCount

OpenStep Specification—10/19/94

Opens for writing the memory region in blogBlock
specified byange A pointer to the region is returned.

Opens for reading the memory region in blagtock.
specified byange A pointer to the region is returned.

Closes the blockBlock

Resizes the bloc&Blockto sizebytes. This
method may change the location of the block as well.

Returns the size in bytes of the bladlock

Begins a new transaction, enabling transactions if
necessary, for the current context. This transaction will
be aborted or committed before all other outstanding
transactions. Returns a number that both identifies the
new transaction and indicates the number of
transactions outstanding.

Reverts the NSByteStore to the state it was in before the
laststartTransaction message or the last
commitTransaction message. Any blocks that had
been opened are made available to other store contexts.

Commits all changes made to blocks opened since the last
startTransaction or the lastommitTransaction and
closes those blocks. If transactions are disabled or the
nesting level becomes 0, this method makes all of the
changed blocks available to other contexts.

Returns YES if transactions are enabled for the
NSByteStore, NO if not. Transactions are enabled by
the methodstartTransaction.

Returns the number of transactions pending against the
NSByteStore.

Returns the number of changes made to the NSByteStore’s
contents since it was initialized. This number equals the
number ocommitTransaction andabortTransaction
messages the NSByteStore has received.

Classes: NSByteStore2-29

Changing the Contents

— (void)copyBytes{(const void *hewData Copies the series of bytes pointed tanbyDatainto the
toBlock: (unsignedBlock memory region in bloc&Blockspecified byange This
range:(NSRangeange method will expand the block’s size if the data will not

fit in the location specified lyange
— (NSData *tontentsAsData Creates a virtual memory image of the NSByteStore.

— (voidyeplaceContentsWithData(NSData *fata Replaces the contents of the NSByteStore with virtual
memory imagealata This method ignores and erases
any pending writes to the NSByteStore.

2-30 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSByteStoreFile

Inherits From: NSByteStore : NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSByteStore.h

Class Description

NSByteStoreFile is a subclass of NSByteStore that keeps its storage in a file. NSByteStoreFile guarantees the
integrity of stored data against process and system crashes when protected by transactions (described in the
NSByteStore class specification), provided that the physical media remains intact.

When you create an NSByteStoreFile, you specify a storage file and open it for reading only or for both reading
and writing. The methods you use to access the contents of the file are implemented in NSByteStore.

To support the use of preconfigured files, a process using an NSByteStoreFile opened for reading only may freely
modify the NSByteStoreFile; all modified pages are reflected only in the address space of the process. The
modifications are never written to the file and are discarded when the NSByteStoreFile is freed.

Creating and Initializing an NSByteStoreFile Instance

+ (NSByteStore HyteStoreFile(NSString*)path
transactionsEnabled(BOOL)enable
create(BOOL)create
readOnly:(BOOL)readOnly

— (id)initwithPath: (NSString*path
transactionsEnabled(BOOL)enable
create:(BOOL)create
readOnly:(BOOL)readOnly

Accessing the Storage File

— (NSString *storePath

OpenStep Specification—10/19/94

Creates and initializes an NSByteStoreFile wigith as its
storage file. IEnableis YES, transactions are enabled.
If createis YES, the filgpathis created. IfeadOnlyis
YES, pathis opened for reading. i€adOnlyis NO,
path is opened for reading and writing.

Initializes a newly allocated NSByteStoreFile witthas
its storage file. [Enableis YES, transactions are
enabled. Iftreateis YES, the filgpathis created. If
readOnlys YES,pathis opened for reading. If
readOnlyis NO, path is opened for reading and writing.

Returns the path of the storage file.

Classes: NSByteStoreFile2-31

Reducing Memory Consumption

— (voidcompactUntilDate:(NSDate *}imitDate Removes free space by relocating blocks toward the origin
of the virtual address space defined by the
NSByteStoreFilelimitDate sets a time limit on this
operation. NdimitDate allows the compaction to run to
completion.

2-32 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSCalendarDate

Inherits From: NSDate : NSObject

Conforms To: NSCoding, NSCopying (NSDate)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSCalendarDate is a public subclass of NSDate that defines concrete date objects. These objects have time zones
and format strings bound to them and are especially suited for representing and manipulating dates according to
western calendrical systems.

By drawing on the behavior of the NSTimeZone class, NSCalendarDate objects adjust their visible representations
to reflect their associated time zones. Because of this, you can track an NSCalendarDate object across different time
zones. You can also present date information from time-zone viewpoints other than the one for the current locale.

Each NSCalendarDate object also has a calendar format string bound to it. This format string contains
date-conversion specifiers that are very similar to those used in the standard C library $trfiitiag) . By

reference to this format string, NSCalendarDate can interpret dates that are represented as strings conforming to
the format. Several methods allow you to specify formats other than the one bound to the object, and
setCalendarFormat: lets you change the default format string for an NSCalendarDate object.

NSCalendarDate provides both class and instance methods for obtaining initialized objects. Some of these methods
allow you to initialize date objects from strings while others initialize objects from sets of integers corresponding
the standard time values (months, hours, seconds, etc.). As always, you are responsible for deallocating any objects
obtained through aalloc... or copy...method.

To retrieve conventional elements of a date, use the methods of thedp@fiVeek, monthOfYear, and so on.
For exampledayOfWeek returns a number that indicates the day of the week (0 is SundayhohitieOfYear
method returns a number from 1 to 12 that indicates the month.

NSCalendarDate provides several methods for representing dates as strings. These rdetitoigsion,
descriptionWithLocale:, descriptionWithCalendarFormat:, and
descriptionWithCalendarFormat:timeZone: —take an implicit or explicit format string.

NSCalendarDate performs date computations based on western calendar systems, primarily the Gregorian. (The
algorithms are derived from public domain software described in “Calendrical Calculations,” a two-part series by
Nachum Dershowitz and Edward M. Reingoldioftware—Practice and Experience

OpenStep Specification—10/19/94 Classes: NSCalendarDate2-33

General Exceptions

NSCalendarDate will raise NSinvalidArgumentException in the general case where numeric character strings to
specify years, months, days, and so on, are not valid numbers.

Getting and Initializing an NSCalendar Date

+ (NSCalendarDate tplendarDate Returns an NSCalendarDate initialized to the current date
and time.

+ (NSCalendarDate HateWithString: (NSString *)description
calendarFormat:(NSString *format Returns an NSCalendarDate object initialized with the
date specified idescriptionand interpreted according
the the conversion specifiersformat Raises
NSInvalidArgumentException if théescriptionand
formatdo not correspond exactly.

+ (NSCalendarDate tateWithString: (NSString *description
calendarFormat:(NSString *format Returns an NSCalendarDate object initialized with the date
locale(NSDictionary *dictionary date specified idescriptionand interpreted according
the the conversion specifiersfarmat String
components of the date are fetched from the locale
dictionary Raises NSinvalidArgumentException if the
descriptionandformatdo not correspond exactly.

+ (NSCalendarDate HateWithYear: (int)year Returns an NSCalendarDate object initialized with integers
month:(unsigned inthonth that specify gyear (which must include the
day:(unsigned intay century),month day, hour, minute andsecond Also
hour: (unsigned inthour include a time-zone object or time-zone detail object
minute: (unsigned inthinute (aTimeZongto have the date adjusted to a particular
second(unsigned in8econd locale. If you specifyil for a time zone,
timeZone:(NSTimeZone *aTimeZone NSinvalidArgumentException is raise(&ee

"Retrieving Date Elements," below, for the proper
ranges of the date and time integers.)

— (id)initwithString: (NSString *description Initializes and returns an NSCalendarDate object specified
by descriptionin the international format for date
representation (YYYY-MM-DD HH:MM:SS
+ HHMM, wherex HHMM is an offset from GMT).

— (id)initWithString: (NSString *description Initializes and returns an NSCalendarDate object specified
calendarFormat:(NSString *format as a string object idescriptionand interpreted
according to the extendettftime() date-conversion
specifiers iformat Raises
NSlInvalidArgumentException if théescriptionand
formatdo not correspond exactly.

2-34 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (id)initWithString: (NSString *description Initializes and returns an NSCalendarDate object specified
calendarFormat:(NSString *format as a string object idescriptionand interpreted
locale:(NSDictionary *dictionary according to the extendstiftime date-conversion

specifiers iformat String components of the date are
fetched from the localdictionary Raises an
NSinvalidArgumentException if theescriptionand
formatdo not correspond exactly.

— (id)initwithYear: (int)year Returns an NSCalendarDate object initialized with integers
month: (unsigned inthonth that specify ayear (which must include the
day:(unsigned intglay century),month day, hour, minute andsecond Also
hour: (unsigned infhour include a time-zone objecTimeZongto have the
minute: (unsigned intninute date adjusted for a particular locale. Raises an
second(unsigned in§econd NSInvalidArgumentException if you specifyl for a
timeZone:(NSTimeZone *aTimeZone time zone. (See "RetrievingDate Elements," below, for

the proper ranges of the date and time integers.)

Retrieving Date Elements

— (int}dayOfCommonEra Returns the number of days since the beginning of the
Common Era.

— (int}dayOfMonth Returns the day of the month (1 through 31) of the
NSCalendarDate object.

— (int}dayOfWeek Returns a number indicating the day of the week (0 [Sun]
through 6 [Sat]) of the NSCalendarDate object.

— (int)dayOfYear Returns a number indicating the day of the year (1 through
366) of the NSCalendarDate object.

— (inthourOfDay Returns a number indicating the hour of the day (0 through
23) of the NSCalendarDate object.

— (intyminuteOfHour Returns a number indicating the minute of the hour (0
through 59) of the NSCalendarDate object.

— (intfmonthOfYear Returns a number indicating the month of the year (1
through 12) of the NSCalendarDate object.

— (int)secondOfMinute Returns a number indicating the second of the minute (0
through 59) of the NSCalendarDate object.

— (intlyearOfCommonEra Returns a number indicating the year, including the
century, of the NSCalendarDate object.

OpenStep Specification—10/19/94 Classes: NSCalendarDate2-35

Providing Adjusted Dates

— (NSCalendarDate &ddYear:(int)year Returns an NSCalendarDate objects withyta; month
month: (int)month dayhour, minute andsecondbffsets specified as
day:(int)day arguments and the correct time-zone detail object for
hour: (int)hour the computed date. These offsets are relative to the
minute: (intyminute object and can be positive or negative. This method
second(int)second preserves “clock time” during transitions to and from

Daylight Savings Time and on leap years.

Getting String Descriptions of Dates

— (NSString *fescription Returns a string description of the receiver’s date using the
default format string (%Y-%m-%d %H:%M:%S %z)
and the locale and time-zone information associated
with the receiver.

— (NSString *HescriptionWithCalendarFormat: (NSString *format
Returns a string description of the receiver’s date that is
formatted according to the conversion specifiers in
formatand using the locale and time-zone detail
information associated with the receiver.

— (NSString *yescriptionWithCalendarFormat: (NSString *format
locale:(NSDictionary *Jocale Returns a string description of the receiver’s date that is
formatted according to the conversion specifiers in
format, represented according to the locale information
inlocale, and adjusted according to the time-zone detail
information associated with the receiver.

— (NSString *fescriptionWithLocale:(NSDictionary *Jocale
Returns a string description of the receiver’s date using the
default format string (%Y-%m-%d %H:%M:%S %z),
with information localized according to the locale
information inlocale, and using the time zone
information associated with the receiver.

Getting and Setting Calendar Formats

— (NSString *falendarFormat Returns the calendar format (a string of date-conversion
specifiers) for the receiving object. The default calendar
format is “%Y-%m-%d %H:%M:%S %z".

— (voidsetCalendarFormat(NSString *Yormat Sets the calendar format for the receiving objetbiimat

2-36 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Getting and Setting Time Zones

— (voidsetTimeZone(NSTimeZone *aTimeZone Sets the time-zone object associated with the
NSCalendarDate object &a¥imeZone

— (NSTimeZoneDetail Y)meZoneDetail Returns the NSTimeZoneDetail object associated with the
receiver.

OpenStep Specification—10/19/94 Classes: NSCalendarDate2-37

NSCharacterSet

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSCharacterSet class declares the programmatic interface to objects that construct imlesetaitiensof

character sets in the Unicode character encoding. Using NSCharacterSet objects, you can determine if a given
Unicode character belongs to a specified set. See NSMutableCharacterSet for a class that constructs descriptions
of character sets that can be modified dynamically. NSCharacterSet'’s primitive mettabdsacterisMember:
andbitmapRepresentation Subclasses of NSCharacterSet must implement these two methods.

NSCharacterSet objects can be thought of as loosely analogoussto. timacros (such dsupper())available in
thectype collection of most standard C libraries. NSCharacterSet objects, however, offer much greater flexibility
in that you can dynamically construct your own custom character sets against which you can test characters.

The term “bitmap” in the descriptions below does not refer to “bitmap characters” in the sense of screen fonts for
display. The “bitmaps” referred to here are compact ordgtexbtrepresentations of Unicode character positions
or ranges of Unicode characters.

You create “standard” character sets—such as a set of alphanumerics, or a set of decimal digits—by invoking the
NSCharacterSet class object with one of the methods described in “Creating a Standard Character Set”. These
methods provide convenient means to create a standard set without needing to specify the character positons
explicitly.

You can also create your own “custom” character sets by using one of the methods described under “Creating a
Custom Character Set”. To create a character set with multiple disjoint ranges agkek.theethods described in
NSMutableCharacterSet.

Creating a Standard Character Set

+ (NSCharacterSet dphanumericCharacterSet Returns a character set containing the uppercase and
lowercase alphabetic characters (a—z, A-Z, other
alphabetic characters such as é, E, ¢, C, and so on) and
the decimal digit characters (0-9).

+ (NSCharacterSet épntrolCharacterSet Returns a character set containing the control characters
(characters with decimal Unicode values 0 to 31 and
127 to 159)

2-38 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

+ (NSCharacterSet decimalDigitCharacterSet Returns a character set containing only decimal digit
characters (0-9).

+ (NSCharacterSet fecomposableCharacterSet Returns a character set containing all individual Unicode
characters that can also be represented as composed
character sequences.

+ (NSCharacterSet tlegalCharacterSet Returns a character set containing the illegal Unicode
values.
+ (NSCharacterSet gtterCharacterSet Returns a character set containing the uppercase and

lowercase alphabetic characters (a—z, A—Z, other
alphabetic characters such as é, E, ¢, C, and so on).

+ (NSCharacterSet lwercaseLetterCharacterSet
Returns a character set containing only lowercase
alphabetic characters (a—z, other alphabetic characters
such as é, ¢, and so on).

+ (NSCharacterSet fpnBaseCharacterSet Returns a set containing all characters which are not
defined to be base characters for purposes of dynamic
character composition.

+ (NSCharacterSet tjppercaseletterCharacterSet
Returns a character set containing only uppercase
alphabetic characters (A—Z, other alphabetic characters
such as E, C, and so on).

+ (NSCharacterSet WhitespaceAndNewlineCharacterSet
Returns a character set containing only whitespace
characters (space and tab) and the newline character.

+ (NSCharacterSet WhitespaceCharacterSet Returns a character set containing only in-line whitespace
characters (space and tab). This set doesn’t contain the
newline or carriage return characters.

Creating a Custom Character Set

+ (NSCharacterSet ¢haracterSetWithBitmapRepresentation(NSData *fata
Returns a character set containing characters determined
by the bitmap representatidiata

+ (NSCharacterSet gharacterSetWithCharactersinString: (NSString *aString
Returns a character set containing the characta&tiing
If aStringis empty, an empty character set is returned.
aStringmust not benil.

OpenStep Specification—10/19/94 Classes: NSCharacterSeR-39

+ (NSCharacterSet ¢gharacterSetWithRange(NSRangedRange
Returns a character set containing characters whose
Unicode values are given aRange

Getting a Binary Representation

— (NSData *pitmapRepresentation Returns an NSData object encoding the receiving character
set in binary format. This format is suitable for saving
to a file or otherwise transmitting or archiving.

Testing Set Membership
— (BOOL)characterlsMember:(unicharpCharacter Returns YES ihCharacteiis in the receiving character set,
NO if it isn’t.
Inverting a Character Set

— (NSCharacterSet itjvertedSet Returns a character set containing only characters that
don't exist in the receiver.

2-40 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSCoder

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSCoder.h

Foundation/NSGeometry.h

Class Description

NSCoder is an abstract class that declares the interface used by subclasses to take objects from dynamic memory
and code them into and out of some other format. This capability provides the basis for archiving (where objects
and other structures are stored on disk) and distribution (where objects are copied to different address spaces). See
the NSArchiver and NSUnarchiver class specifications for more information on archiving.

NSCoder operates on the basic C and Objective C tymesfleat, id, and so on (but excludingid * and
union)—as well as on user-defined structures and pointers to these types.

NSCoder declares methods that a subclass can override if it wants:

« To encode or decode an object only under certain conditions, such as it being an intrinsic part of a larger
structure éncodeRootObject:andencodeConditionalObject).

» To allow decoded objects to be allocated from a specific memory get@bfectZone).
» To allow system versioningystemVersior).

NSCoder differs from the NSSerializer and NSDeserializer classes in that NSCoders aren't restricted to operating
on property list objects (objects of the NSData, NSString, NSArray, and NSDictionary classes). Also, unlike
NSSerializers, NSCoders store type information along with the data. Thus, an object decoded from a stream of
bytes will be of the same class as the object that was originally encoded into the stream.

Encoding and Decoding Objects

In OpensStep, coding is facilitated by methods declared in several places, most notably the NSCoder class, the
NSObject class, and the NSCoding protocol.

The NSCoding protocol declares the two methede¢deWithCoder: andinitWithCoder:) that a class must

implement so that objects of that class can be encoded and decoded. When an object receives an
encodeWithCoder: message, it should send a messageiper to encode inherited instance variables before it
encodes the instance variables that it’s class declares. For example, a fictitious MapView class that displays a legend
and a map at various magnifications, might implereagbdeWithCoder: like this:

OpenStep Specification—10/19/94 Classes: NSCoder 2-41

- (void)encodeWithCoder:(NSCoder *)coder
{

[super encodeWithCoder:coder];
[coder encodeValuesOfObjCTypes:"si@", &mapName, &magnification, &legendView];

}

Objects are decoded in two steps. First, an object of the appropriate class is allocated and then it's sent an
initWithCoder: messages to allow it to initialize its instance variables. Again, the object should first send a
message tsuper to initialized inherited instance variables, and then it should initialize its own. MapView’s
implementation of this method looks like this:

- (id)initWithCoder:(NSCoder *)coder
{

self = [super initWithCoder:coder];
[coder decodeValuesOfObjCTypes:"si@", &mapName, &magnification, &legendView];
return self;

}

Note the assignment of the return valuadfVithCoder: toselfin the example above. This is done in the subclass
because the superclass, in its implementationit/ithCoder: , may decide to return a object other than itself.

There are other methods that allow an object to customize its response to encoding or decoding. NSObject declares
these methods:

Method Typical Use

classForCoder: Allows an object, when being encoded, to substitute a class other than its own.
For example, the private subclasses of a class cluster substitute the name of
their public superclass when being archived.

replacementObjectForCoder: Allows an object, when being encoded, to substitute another object for itself.
For example, an object might encode itself into an archive, but encode a proxy
for itself if it's being encoded for distribution.

awakeAfterUsingCoder: Allows an object, when being decoded, to substitute another object for itself.
For example, an object that represents a font might, upon being decoded,
release itself and return an existing object having the same font description as
itself. In this way, redundant objects can be eliminated.

See the NSObiject class specification for more information.

2-42 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Encoding Data

— (void)encodeArrayOfObjCType:(const char *ypes

count:(unsigned intgount Encodes data of Objective C types listetypeshaving
at:(const void *prray countelements residing at addressay.
— (void)encodeBycopyObject(id)anObject Overridden by subclasses to encode the supplied Objective

C object so that a copy rather than a proxgrédbject
is created upon decoding. NSCoder’s implementation
simply invokesencodeObiject:

— (voidencodeConditionalObject(id)anObject Overridden by subclasses to conditionally encode the
supplied Objective C object. The object should be
encoded only if it is an intrinsic member of the larger
data structure. NSCoder’s implementation simply

invokesencodeObject:

— (void)encodeDataObject{NSData *pata Encodes the NSData objet:dta

— (void)encodeObiject(id)anObject Encodes the supplied Objective C object.

— (voidencodePropertyListi(id)aPropertyList Encodes the supplied property list (NSData, NSArray,
NSDictionary, or NSString objects).

— (void)encodePoint(NSPointpoint Encodes the supplied point structure.

— (void)encodeRect{NSRectject Encodes the supplied rectangle structure.

— (void)encodeRootObject{id)rootObject Overridden by subclasses to start encoding an

interconnected group of Objective C objects, starting
with rootObject NSCoder’s implementation simply
invokesencodeObject:

— (void)encodeSizgNSSizepize Encodes the supplied size structure.

— (void)encodeValueOfObjCType(const char *ype Encodes data of the specified Objective C type
at:(const void *pddress residing address

— (voidencodeValuesOfObjCTypedconst char *ypes,..
Encodes values corresponding to the Objective C types
listed intypesargument list.

Decoding Data

— (void)decodeArrayOfObjCType:(const char *ypes

count:(unsignedgount Decodes data of Objective C types listetlyimehaving
at:(void *)address countlements residing address

— (NSData *jlecodeDataObject Decodes and returns an NSData object.

— (id)decodeObject Decodes an Objective C object.

OpenStep Specification—10/19/94 Classes: NSCoder 2-43

— (id)decodePropertyList

— (NSPointYlecodePoint
— (NSRectjlecodeRect
— (NSSizejlecodeSize

— (void)decodeValueOfObjCType(const char *ype

at:(void *)address

Decodes a property list (NSData, NSArray, NSDictionary,
or NSString objects).

Decodes a point structure.
Decodes a rectangle structure.

Decodes a size structure.

Decodes data of the specified Objectiviy@residing at
addressYou are responsible for releasing the resulting
objects.

— (void)decodeValuesOfObjCTypesiconst char *ypes,...

Managing Zones

— (NSZone *pbjectZone

— (void)setObjectZone(NSZone *gone

Getting a Version

— (unsigned ingystemVersion

Decodes values corresponding to the Objective C types
listed intypesargument list. You are responsible for
releasing the resulting objects.

Returns the memory zone used by decoded objects. For
instances of NSCoder, this is the default memory zone,
the one returned by SDefaultMallocZone()

Sets the memory zone used by decoded objects. Instances
of NSCoder always use the default memory zone, the
one returned biNSDefaultMallocZone(), and so
ignore this method.

Returns the system version number as of the time the
archive was created.

— (unsigned intjersionForClassName(NSString *className

2-44 Chapter 2: Foundation Kit

Returns the version number of the classsNames of
the time it was archived.

OpensStep Specification—10/19/94

NSConditionLock

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h

Class Description
NSConditionLock objects are used to lock and unlock threads when specified conditions occur.

The user of an NSConditionLock object can lock when a process enters a particular state and can set the state to
something else when releasing the lock. The states are defined by the lock’s user. NSConditionLock is well suited
to synchronizing different modules such as a producer and a consumer where the two modules must share data, but
the consumer must sleep until a condition is met such as more data being available.

The NSConditionLock class provides four ways of locking its objémt&,(lockwWhenCondition:, tryLock , and
tryLockWhenCondition) and two ways of unlockingiflock andunlockWithCondition:). Any combination of
locking method and unlocking method is legal.

The following example shows how the producer-consumer problem might be handled using condition locks. The
producer need not wait for a condition, but must wait for the lock to be made available so it can safely create shared
data. For example, a producer could use a lock this way:

[* create the lock only once */
id condLock = [NSConditionLock new];

[condLock lock];
/* Manipulate global data... */
[condLock unlockWithCondition:HAS_DATA];

Multiple consumer threads can then lock until there’s data available and everyone is out of locked critical sections.
In the following code sample, the consumer sleeps until the producer inudkekWithCondition: with the
parameter HAS_DATA:

[condLock lockWhenCondition:HAS_DATA];
/* Manipulate global data if necessary... */
[condLock unlockWithCondition:(moreData ? HAS_DATA : NO_DATA)];

An NSConditionLock object doesn’t busy-wait, so it can be used to lock time-consuming operations without
degrading system performance.

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the NSLocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

OpenStep Specification—10/19/94 Classes: NSConditionLock2-45

Initializing an NSConditionLock

— (id)initwithCondition: (int)condition

Returning the Condition

— (int)condition

Acquiring and Releasing a Lock

— (voidJockWhenCondition: (int)condition

— (voidunlockWithCondition: (int)condition
— (BOOL)ryLock

— (BOOL)YryLockWhenCondition: (int)condition

2-46 Chapter 2: Foundation Kit

Initializes a newly created NSConditionLock and sets its
condition tocondition

Returns the receiver’s condition, the state that must be
achieved before a conditional lock can be acquired or
released.

Attempts to acquire a lock wheonditionis met. Blocks
until conditionis met.

Releases the lock and sets lock statotadition

Attempts to acquire a lock. Returns YES if successful and
NO otherwise.

Attempts to acquire a lock wheonditionis met. Returns
YES if successful and NO otherwise.

OpensStep Specification—10/19/94

NSConnection

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSConnection.h

Class Description

The NSConnection class declares the programmatic interface to objects that nwmagestorsuch that objects
in one thread can send messages to objects in another thread (typically, in another process, and it defines instances
that manage each side of such a connection.

Each distinct thread of execution has one default connection defined. Any given thread can have as many
connections as desired, but a given connection can be served by only one thread.

To set up a connection, some object in your application must be established as what is known as a “root” object and
registered with a name in the Network Name Server. Such root objects can then be connected to by other threads,
and can receive messages sent to them from other threads. An easy way to establish an object as a root object is to
send thalefaultConnection method to the NSConnection class object to obtain a connection object. Then use
setRootObject:to establish the desired object as the object that will be registered, followedisterName:to
make that object available to the Network Name Server under the specified name.

To obtain a connection to an object registered elsewhere, you will generally send the
rootProxyForConnectionWithRegisteredName:host:method to the NSConnection class object. This method
returns a proxy to the remote object. You should then inform the proxy of the protocol(s) the remote object responds
to usingsetProtocolForProxy:. To obtain the actual connection object instead of the proxy, use the
connectionWithRegisteredName:hostmethod.

If the string@"*" is used where a hostname is required, it implies a lookup for any server registered with the
specified name on the local subnetilfis supplied where a hostname is required, the name lookup occurs only
on the local host.

When an NSConnection object is deallocated, the notification NSConnectionDeath is posted to the default
notification center with that NSConnection object.

Exceptions

NSConnection can raise NSinternallnconsistencyException for a variety of reasons when it detects “impossible”
situations. In addition, NSConnection can raise NSinvalidArgumentException when a remote method invocation
sends an unknown selector.

OpenStep Specification—10/19/94 Classes: NSConnection2-47

Initializing a Connection

— (id)init Initialize a newly allocated NSConnection suitable for a
new registry and new name.

Establishing a Connection

+ (NSConnection YonnectionWithRegisteredName(NSString *hame

host:(NSString *hostName Registers and returns a connection widmeon
hostName
+ (NSConnection JefaultConnection Establishes and returns a default per-thread connection.

+ (NSDistantObject ¥potProxyForConnectionWithRegisteredName(NSString *name
host(NSString *hostName Registers a connection witlameonhostNamend returns
its root proxy.

Determining Connections
+ (NSArray *)allConnections Returns an array describing all existing valid connections.

— (BOOL)sValid Identifies that the receiver is a valid connection.

Registering a Connection

— (BOOLYegisterName(NSString *name Registers the connection withmeon the local system and
returns YES if the registration was successful, NO
otherwise.

Assigning a Delegate
— (id)delegate Returns the connection’s delegate.

— (void)setDelegate(id)anObject Sets the connection’s delegate.

Getting and Setting the Root Object
— (id)rootObject Returns the root object served.

— (NSDistantObject TpotProxy Returns an NSDistantObject proxy to the root object served
by this connection.

2-48 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (void)setRootObject{id)anObject Sets the root object being serveat®bject if the root
object already exists, replaces it wathObject Be
aware that if the root object is replaced while a
connection is active, existing root proxies on the client
side of the connection will continue to communicate
with the previous root object, while new proxies will
communicate with the newly established root object.

Request Mode
— (NSString *yequestMode Returns the mode in which requests are honored.

— (voidsetRequestModegNSString *mode Sets the mode in which requests are honoreadoide

OpenStep Specification—10/19/94 Classes: NSConnection2-49

Conversation Queueing

—(BOOL)independentConversationQueueing ReturnsconversationQueuingmode. The default value is
NO.

—(void)setindependentConversationQueueingBOOL)flag
If flagis YES, unrelated requests are queued for later
processing. This allows a server to use distributed
objects freely in its implementation without concern for
the consistency of its internal state. Note that this can
cause deadlocks among peers.

Timeouts
— (NSTimelntervabeplyTimeout Returns the reply timeout time interval.
— (NSTimelntervabequestTimeout Returns the request timeout time interval.

— (voidsetReplyTimeout{NSTimelntervalinterval Sets the reply timeout to the time interirdkrval.

— (voidsetRequestTimeout{NSTimelntervalinterval Sets the request timeout to the time inteivirval

Get Statistics

— (NSDictionary *¥tatistics Returns statistics for this connection.

Implemented by the Delegate

— (BOOL)makeNewConnection{NSConnection *yonnection
sender{NSConnection *ancestor Asks permission to create a new connectionnection
whereancestoiis the ancestral connection; returns YES
if connection allowed.

2-50 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSCountedSet

Inherits From: NSMutableSet : NSSet : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class Description

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of objects.
NSCountedSet provides support for the mathematical concemiooided setA counted set, both in its

mathematical sense and in the OpenStep implementation of NSCountedSet, is an unordered collection of elements,
just as in a regular set, but the elements of the set aren’t necessarily distinct. In the literature, a counted set is also
knownas dag

Each new—that is, distinct—object inserted into an NSCountedSet object has a counter associated with it.
NSCountedSet keeps track of the number of times objects are inserted and requires that objects are removed the
same number of times. OpenStep also provides the NSSet class for sets whose &ledistimet—that is, there

is only one instance of an object in an NSSet even if the object has been added to the set multiple times.

Use set objects as an alternative to array objects when the order of elements is not important, but performance in
testing whether an object is contained in théssatconsideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respondhsh andisEqual: methods. See the NSObject protocol for detailbash and
isEqual:. Each new distinct object must provide a unique hash value.

Generally, you instantiate an NSCountedSet object by sending onesef.thmethods to the NSCountedSet class

object, as described in NSSet. These methods return an NSCountedSet object containing the elements (if any) you
pass in as arguments. Newly created instances of NSCountedSet created by invalkdhmétieod can be

populated with objects using any of ihé... methodsinitWithObjects:: is the designated initializer for this

class.

You add or remove objects from a counted set usingdti®bject: andremoveObject: methods.

An NSCountedSet may be queried usingahgctEnumerator method, which provides for traversing elements
of the set one by one. TheuntForObject: method returns the number of times the specified object has been added
to this set

OpenStep Specification—10/19/94 Classes: NSCountedSe®-51

Initializing an NSCountedSet

— (id)initWithArray: (NSArray *)anArray

— (id)initWithCapacity: (unsigned infhumitems

— (id)initWithSet: (NSSet *anotherSet

Adding Objects
— (voidyaddObiject:(id)anObject

Removing Objects

— (voidyemoveObject:(id)anObject

Querying the NSCountedSet
— (unsigned inountForObject: (id)anObject

— (NSEnumerator bjectEnumerator

2-52 Chapter 2: Foundation Kit

Initializes a newly allocated set object by placing in it the
objects contained ianArray.

Initializes a newly allocated set object, giving it enough
memory to holchumltemsobjects.

Initializes a newly allocated set object by placing in it the
objects contained ianotherSet.

AddsanObijectto the set, unlesnObjectis equal to some
object already in the set. In either case, the counter
that’s returned bgountForObject: is incremented.

Decrements the counter for the object, if the set contains an
object that’s equal tanObject If this causes the
counter to reach zero, the object that's equah®bject
is removed from the set.

Returns the number of times that an object equal to
anObjecthas ostensibly been added to the set. (This
number is incremented laddObject: and
decremented bsemoveObiject:.)

Returns an enumerator object that will access each object
in the set only once, regardless of its count.

OpensStep Specification—10/19/94

NSData

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSData.h

Class Description

The NSData class declares the programmatic interface to objects that contain data in the form of bytes. NSData
objects hold a static collection of bytes; NSData'’s subclass, NSMutableData, defines objects that hold modifiable
data. These two classes provide an object-oriented approach to memory allocation, a facility that in procedural
programming is accessed through functionstitadloc(). Furthermore, these classes take advantage of operating
system primitives when allocating large blocks of memory.

NSData'’s two primitive methodsbkytes andlength—provide the basis for all the other methods in its interface.
Thebytes method returns a pointer to the bytes contained in the data d&jgth returns the number of bytes
contained in the data object.

NSData and NSMutableData objects are commonly used to hold the contents of a file. The methods
dataWithContentsOfFile: anddataWithContentsOfMappedFile: return objects that represent a file’s contents.
ThewriteToFile:atomically: method enables you to write the contents of a data object to a file.

NSData provides access methods for copying bytes from a data object into a bufjetByses:to copy the entire
contents of the object getBytes:length:to copy a subset, starting with the first bgetBytes:range:copies a

range of bytes from a starting point within the bytes themselves. You can also return a data object that contains a
subset of the bytes in another data object by usingubéataWithRange: method. Or, you can use the

description method to return an NSString representation of the bytes in a data object.

For determining if two data objects are equal, NSData providésEnealToData: method, which does a
byte-for-byte comparison.

Allocating and Initializing an NSData Object

+ (id)allocWithZone:(NSZone *rone Creates and returns an uninitialized object famme
+ (id)data Creates and returns an empty object. This method is
declared primarily for mutable subclasses of NSData.
+ (id)dataWithBytes:(const void *pytes Creates and returns an object containémgthbytes
length:(unsigned infength of data copied from the buffeytes
+ (id)datawithBytesNoCopy:(void *)bytes Creates and returns an object containémgthbytes
length:(unsigned infength from the buffetbytes

OpenStep Specification—10/19/94 Classes: NSData 2-53

+ (id)dataWithContentsOfFile: (NSString *path Creates and returns an object by reading data from the file
specified bypath

+ (id)datawithContentsOfMappedFile:(NSString *path
Creates and returns an object whose contents come from
the mapped filpath assuming mapped files are
available on the underlying operating system. If
mapped files are not available, this method is identical
to dataWithContentsOfFile:.

— (id)initWithBytes: (const void *pytes Initializes a newly allocated NSData object by putting in it
length:(unsigned infength lengthbytes of data copied from the buffer bytes.

— (id)initwithBytesNoCopy: (void *)bytes Initializes a newly allocated NSData object by putting in it
length:(unsigned infength lengthbytes of data from the buffer bytes.

— (id)initwithContentsOfFile: (NSString *path Initializes a newly allocated NSData object by reading into

it the data from the file specified pgath

— (id)initWithContentsOfMappedFile: (NSString *path
Initializes a newly allocated NSData object to contain the
data residing in the mapped filath, assuming mapped
files are available on the underlying operating system. If
mapped files are not available, this method is identical
to initWithContentsOfFile: .

— (id)initwithData: (NSData *Hata Initializes a newly allocated NSData object by placing in it
the contents of another NSData objeletta

Accessing Data

— (const void *pytes Returns a pointer to the object’s contents. This method
returns read-only access to the data.
— (NSString *fescription Returns an NSString object that contains a hexadecimal
representation of the the receiver’s contents.
— (void)getBytes(void *)buffer Copies the receiver’s contents iftoffer
— (void)getBytes(void *)buffer Copies length bytes of the receiver’s contents ltffer
length:(unsigned infength
— (void)getBytes(void *)buffer Copies intdoufferthe portion of the receiver’s contents
range:(NSRange)aRange withaRangeRaises alNSRangeExceptioff

aRanges not within the range of the receiver’s data.

— (NSData *subdataWithRange(NSRangejRange Returns an object containing a copy of the receiver’s bytes
that fall within the limits specified lgRangeRaises an
NSRangeExceptioifi aRanges not within the range of
the receiver’s data.

2-54 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Querying a Data Object

— (BOOL)sEqualToData:(NSData *pther

— (unsigned intgngth

Storing Data

— (BOOL)writeToFile: (NSString *path
atomically: (BOOL)useAuxiliaryFile

Deserializing Data

Compares the receiving object to other. If the contents of

otherare equal to the contents of the receiver, this
method returns YES. If not, it returns NO.

Returns the number of bytes contained in the receiver.

Writes the bytes in the receiving object to the file specified

by path If useAuxiliaryFileis YES, the data is written

to a backup file and then, assuming no errors occur, the
backup file is renamed atomically to the intended file
name.

— (unsigned infJeserializeAlignedBytesLengthAtCursor(unsigned int*gursor
Returns the length of the serialized bytes at the location

— (void)deserializeBytes{void *)buffer
length:(unsigned inthytes
atCursor: (unsigned int*gursor

— (void)deserializeDataAt{void *)data
ofObjCType: (const char *ype
atCursor: (unsigned int*yursor
context:(id <NSObjCTypeSerializationCallBack>)

callback

OpenStep Specification—10/19/94

referenced bgursor If the bytes have been
page-aligned, it also obtains the relevant “hole”
information and adjusts the cursor. An invocation of this
method must have a corresponding
serializeAlignedBytesLength:invocation.

Deserializedytesnumber of bytes in the buffer pointed

at bybuffer, places them internally startingaitrsor,
and advances the cursor.

Deserializes the data pointed atdwysor, interpreting it

by the Objective C type specifigipeand writing it

to the memory location referenced digta If the data
element is an object other than an instance of
NSDictionary, NSArray, NSString, or NSData, a
callback from objectallbackcan provide further
definition of the object. All Objective C types are
currently supported excephion andvoid *. Pointers
refer to a single item.

Classes: NSData 2-55

— (int)deserializelntAtCursor: (unsigned int*gursor Deserializes and returns the integer encodedrabr. Also
advances the cursor.

— (int)deserializeIntAtindex: (unsigned inthdex Deserializes and returns the integer encoded at oftiest
Does not advance the cursor.

— (void)deserializelnts{(int *)intBuffer Deserializeswumintsintegers encoded at the location
count:(unsigned infhumints referenced bygursorand puts them in the buffer
atCursor: (unsigned int*yursor intBuffer Also advances the cursor.

— (void)eserializelnts{(int *)intBuffer Deserializes\umintsintegers encoded at offdatiex
count:(unsigned intyumints and puts them in the buffentBuffer Does not advance
atindex:(unsigned inthdex the cursor.

2-56 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSDate

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing time intervals, and similar functionality. It presents a programmatic interface through which suitable
date objects are requested and returned. NSDate objects are lightweight and immutable since they represent a
invariant point in time. This class is designed to provide the foundation for arbitrary calendrical representations. Its
subclass NSCalendarDate offers date objects that are suitable for representing dates according to western
calendrical systems.

“Date” as used above implies clock time as well. The standard unit of time for date objects is a value typed as
NSTimelnterval (adouble) and expressed as seconds. The NSTimelnterval type makes possible a wide and
fine-grained range of date and time values, giving accuracy within milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as secglatiseto an absolute reference date. This reference date is

the first instant of January 1, 2001. NSDate converts all date and time representations to and from NSTimelnterval
values that are relative to this absolute reference date. A positive interval relative to a date represents a point in the
future, a negative interval represents a time in the past.

Note: Conventional UNIX systems implement time according to the Network Time Protocol (NTP) standard,
which is based on Coordinated Universal Time. The private implementation of NSDate follows the NTP standard.
However, this standard doesn’t account for leap seconds and therefore isn't synchronized with International Atomic
Time (the most accurate).

Like various other Foundation classes, NSDate lets you obtain operating-system functionality (dates and times)
without depending on operating-system internals. It also provides a basis for the NSRunLoop and NSTimer classes,
which use concrete date objects to implement local event loops and timers.

NSDate’s sole primitive methotimelntervalSinceReferenceDateprovides the basis for all the other methods in
the NSDate interface. It returns a time value relative to an absolute reference date.

Using NSDate

The date objects dispensed by NSDate give you a diverse range of date and time functionality. To obtain dates, send
one of thadate...messages to the NSDate class object. One of the most ugkdtd itself, which returns a date

object representing the current date and time. You can get new date objects with date and time values adjusted from
existing date objects by sendiagdTimelnterval: .

OpenStep Specification—10/19/94 Classes: NSDate 2-57

You can obtain relative date information by sendingitnelnterval... messges to a date object. For instance,
timelntervalSinceNow gives you the time, in seconds, between the current time and the receiving date object.
Compare dates with theEqual:, compare;, laterDate:, andearlierDate: methods and use tliescription

method to obtain a string object that represents the date in a standard international format.

Creating an NSDate Object

+ (id)allocWithZone:(NSZone *fone Allocates an unitialized NSDate aone Returnanil if
allocation fails.

+ (NSDate *Jlate Creates and returns an NSDate set to the current date and
time.

+ (NSDate *flateWithTimelntervalSinceNow:(NSTimelnterval}econds
Creates and returns an NSDate seetmndseconds from
the current date and time.

+ (NSDate *pateWithTimelntervalSince1970(NSTimelnterval¥econds
Creates and returns an NSDate set setmndseconds
from the reference date used by UNI¥ystems. Use a
negative argument value to specify a date and time
before the reference date.

+ (NSDate *HateWithTimelntervalSinceReferenceDate(NSTimelntervalyeconds
Creates and returns an NSDate ssetmndseconds from
the absolute reference date (the first instant of 1 January,
2001). Use a negative argument value to specify a date
and time before the reference date.

+ (NSDate *JlistantFuture Creates and returns an NSDate that represents a date in the
distant future (in terms of centuries). You can use this
object in your code as a control date, a guaranteed outer
temporal limit.

+ (NSDate *JlistantPast Creates and returns an NSDate that represents a date in the
distant past (in terms of centuries). You can use this
object in your code as a control date, a guaranteed
temporal boundary.

— (id)init Initializes a newly allocated NSDate to the current date and
time.
— (id)initwithString: (NSString *description Returns an NSDate with a date and time value specified by

the international string-representation format:
YYYY-MM-DD HH:MM:SS +*HHMM, where
+HHMM is a time zone offset in hours and minutes
from Greenwich Mean Time.

2-58 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (NSDate *)nitWithTimelnterval: (NSTimelnterval}econds
sinceDate(NSDate *anotherDate Returns an NSDate initialized relative to another date
object bysecondgplus or minus).

— (NSDate *nitWithTimelntervalSinceNow: (NSTimelnterval}econds
Returns an NSDate initialized relative to the current date

and time bysecondgplus or minus).

— (id)initWithTimelntervalSinceReferenceDate(NSTimelntervalyeconds
Returns an NSDate initialized relative to the reference date

and time bysecondgplus or minus).

Converting to an NSCalendar Object

— (NSCalendarDate #pteWithCalendarFormat: (NSString *formatString
timeZone:(NSTimeZone *imeZone Returns an NSCalendarDate object bound to the format
stringformatStringand the time zonémeZonelf you
specifynil after either or both of these arguments, the
default format string and time zone are assumed.

Representing Dates

— (NSString *fescription Returns a string representation of the receiver. The
representation conforms to the international format
YYYY-MM-DD HH:MM:SS +tHHMM, where
+HHMM represents the time-zone offset in hours and
minutes from Greenwich Mean Time (GMT).

— (NSString *HescriptionWithCalendarFormat: (NSString *formatString
timeZone:(NSTimeZone *aTimeZone Returns a string representation of the receiver. The
locale:(NSDictionary *JocaleDictionary representation conforms tormatString(a
strftime -style date-conversion string) and is adjusted to
aTimeZonelncluded are the keys and values that
represent the locale data frdotaleDictionary

— (NSString *YlescriptionWithLocale: (NSDictionary *JocaleDictionary
Returns a string representation of receiver (see

description). Included are the key and values that
represent the locale data frdotaleDictionary

OpenStep Specification—10/19/94 Classes: NSDate 2-59

Adding and Getting Intervals

+ (NSTimelntervafimelntervalSinceReferenceDate
Returns the interval between the system’s absolute
reference date and the current date and time. This value
is less than zero until the first instant of 1 January 2001.

—addTimelnterval: (NSTimelntervalyeconds Returns an NSDate that's set to a specified number of
seconds relative to the receiver.

— (NSTimelntervafimelntervalSince1970 Returns the interval between the receiver and the reference
date used by UNIX systems.

— (NSTimelntervakimelntervalSinceDate:(NSDate *pnotherDate
Returns the interval between the receiveramatherDate

— (NSTimelntervafimelntervalSinceNow Returns the interval between the receiver and the current
date and time.

— (NSTimelntervafimelntervalSinceReferenceDate
Returns the interval between the receiver and the system’s
absolute reference date. This value is less than zero until
the first instant of 1 January 2001.

Comparing Dates

— (NSComparisonResut®ympare:(NSDate *anotherDate
Compares the receiver’s date to thaanbtherDateand
returns NSOrderedDescending if the receiver is
temporally later, NSOrderedAscending if it's
temporally earlier, and NSOrderedSame if they are
equal.

— (NSDate *garlierDate:(NSDate *anotherDate = Compares the receiver’s dateatwotherDateand returns
the one that's temporally earlier.

— (BOOL)sEqual:(id)anotherDate Returns YES ifanotherDateand the receiver are within
one second of each other; otherwise, returns NO.

— (NSDate *JaterDate:(NSDate *anotherDate Compares the receiver’s dateataotherDateand returns
the one that's temporally later.

2-60 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSDeserializer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSSerialization.h

Class Description

The NSDeserializer class declares methods that convert an abstract representation of a property list (as contained
in an NSData object) into a graph of property list objects in memory. The NSDeserializer class object itself provides
these methods; you don’t create instances of NSDeserializer. Options to these methods allow you to specify that
container objects (arrays or dictionaries) in the resulting graph be mutable or immutable; that deserialization begin
at the start of the data or from some position within it; or that deserialization occur lazily, so that a property list is
deserialized only if it is actually going to be accessed. See the NSSerializer specification for more information on
serialization.

Deserialization Into Property Lists

+ (id)deserializePropertyListFromData:(NSData *fata
atCursor: (unsigned int*yursor Returns a property list object corresponding to the abstract
mutableContainers:(BOOL)mutable representatioin dataat the locatiorcursor. If mutable
is YES and the object is a dictionary or an array, the
re-composed object is made mutable. Retaiing the
object is not a valid one for property lists.

+ (id)deserializePropertyListFromData:(NSData *fata
mutableContainers:(BOOL)mutable Returns a property list object corresponding to the abstract
representatiom dataor nil if datadoesn'’t represent a
property list. Ifmutableis YES and the object is a
dictionary or an array, the re-composed object is made
mutable.

+ (id)deserializePropertyListLazilyFromData:(NSData *fata

atCursor: (unsigned int*yursor Returns a property list frontataat locatiorcursoror nil if
length:(unsigned infength datadoesn't represent a property list. The
mutableContainers(BOOL)mutable deserialization proceeds lazily. That isjaftaatcursor

has a length greater theangth a proxy is substituted
for the actual property list as long as the constituent
objects of that property list are not being accessed. If
mutableis YES and the object is a dictionary or an
array, the re-composed object is made mutable.

OpenStep Specification—10/19/94 Classes: NSDeserializer2-61

NSDictionary

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

Class Description

The NSDictionary class declares the programmatic interface to objects that manage immutable associations of keys
and valuesYou use this class when you need a convenient and efficient way to retrieve data associated
with an arbitrary key.

A key-value pair within an NSDictionary is called @mtry. Each entry consists of an string object that represents

the key and another object (of any class) that is that key’s value. You establish the entries when the NSDictionary
is created, and thereafter the entries can’t be modified. (The complementary class NSMutableDictionary defines
objects that manage modifiable collections of entries. See the NSMutableDictionary class specification for more
information.)

Internally, an NSDictionary uses a hash table to organize its storage and to provide rapid access to a value given the
corresponding key. However, the methods defined for this class insulate you from the complexities of working with
hash tables, hashing functions, or the hashed value of keys. These methods take key values directly, not their hashed
form.

Generally, you instantiate an NSDictionary by sending one dfitienary... messages to the class object. These
methods return an NSDictionary containing the associations specified as arguments to the method. Each key
argument is copied and the copy is added to the NSDictionary. Each corresponding value object retaiives a
message to ensure that it won't be deallocated prematurely.

NSDictionary’s three primitive methodseeunt andobjectForKey: andkeyEnumerator—provide the basis for
all the other methods in its interface. Tdoeint method returns the number of entries in the objdxggctForKey:
returns the value associated with the given keykag&numerator returns an object that lets you step through
entries in the dictionary.

The other methods declared here operate by invoking one or more of these primitives. The non-primitive methods
provide convenient ways of accessing multiple entries at oncedéRueiption... methods and the
writeToFile:atomically: method cause an NSDictionary to generate a description of itself and store it in a string
object or a file.

Exceptions

NSSet implements the encodeWithCoder: method, which raises NSinternallnconsistencyException if the number
of objects enumerated for encoding turns out to be unequal to the number of objects in the set.

2-62 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Creating and Initializing an NSDictionary
+ (id)allocWithZone:(NSZone *fone Creates and returns an uninitialized NSDictionargdne
+ (id)dictionary Creates and returns an empty NSDictionary.

+ (id)dictionaryWithContentsOfFile: (NSString *path
Creates and returns an NSDictionary from the keys and
values found in the file specified pgth

+ (id)dictionaryWithObjects: (NSArray *)objects Creates and returns an NSDictionary that associates
forKeys:(NSArray *)keys objects from thebjectsarray with keys from thkeys
array. Keys must be strings. Raises
NSInvalidArgumentException if the numberafjects
is not equal to the number kéys

+ (id)dictionaryWithObjects: (id *)objects Creates and returns an NSDictionary contaimiognt
forKeys:(id *) keys objects from th@bjectsarray. The objects are
count:(unsigned inount associated witlsountkeys taken from thkeysarray.

+ (id)dictionaryWithObjectsAndKeys: (id)firstObject, ...

Creates and returns an NSDictionary that associates objects
and keys from the argument list. The list must be in
form: objectl keyl object2 key? ...,nil. Raises
NSInvalidArgumentException if any of the keys are nil,
or if any of the keys are not of the NSString class.

— (id)initwithContentsOfFile: (NSString *path Initializes a newly allocated NSDictionary using the keys
and values found iflename

— (id)initwithDictionary: (NSDictionary *dictionary
Initializes a newly allocated NSDictionary by placing in it
the keys and values containedbtherDictionary

— (id)initwWithObjectsAndKeys: (id)firstObject... Initializes a newly allocated NSDictionary by placing in it
the objects and keys from the argument list. The list
must be in formobject] key] object2 key?2 ...,nil.
Raises NSInvalidArgumentException if any of the keys
are nil, or if any of the keys are not of the NSString

class.
— (id)initwithObjects: (NSArray *)objects Initializes a newly allocated NSDictionary by associating
forKeys:(NSArray *)keys objects from th@bjectsarray with keys from thkeys

array. Keys must be strings. Raises
NSInvalidArgumentException if the number of objects
is not equal to the number of keys.

OpenStep Specification—10/19/94 Classes: NSDictionary 2-63

— (id)initwithObjects: (id *)objects
forKeys:(id *)keys
count:(unsignedgount

Accessing Keys and Values

— (NSArray *allKeys

— (NSArray *allKeysForObject:(id)object

— (NSArray *allValues

— (NSEnumerator ReyEnumerator

— (NSEnumerator t)bjectEnumerator

— (id)objectForKey:(id)aKey

Counting Entries

— (unsignedjount

Comparing Dictionaries

Initializes a newly allocated NSDictionary by associating
counbbjects from th@bjectsarray with an equal
number of keys from thkeysarray. Raises
NSinvalidArgumentException if any of tlodjectsor
keysarenil .

Returns an NSArray containing the receiver’s keys or an
empty array if the receiver has no entries.

Finds all occurrences of the valaeObjectin the receiver
and returns an array with the corresponding keys.

Returns an NSArray containing the dictionary’s values, or
an empty array if the dictionary has no entries.

Returns an NSEnumerator that lets you access each of the
receiver’s keys.

Returns an NSEnumerator that lets you access each the
receiver’s values.

Returns an entry’s value given its keyndrif no value is
associated witlKey

Returns the number of entries in the receiver.

— (BOOL)sEqualToDictionary: (NSDictionary *pther

Storing Dictionaries

— (NSString *Hescription

— (NSString *YlescriptionInStringsFileFormat

2-64 Chapter 2: Foundation Kit

Compares the receiver etherDictionary If the contents
of otherDictionaryare equal to the contents of the
receiver, this method returns YES. If not, it returns NO.

Returns a string that represents the contents of the receiver.

Returns a string that represents the contents of the receiver.
Key-value pairs are represented in a appropriate for use
in “.strings” files

OpensStep Specification—10/19/94

— (NSString *fescriptionWithLocale:(NSDictionary *JocaleDictionary
Returns a string representation of the NSDictionary object.

Included are the key and values that represent the locale
data fromlocaleDictionary

— (NSString *HescriptionWithLocale: (NSDictionary *JocaleDictionary
Returns a string representation of the NSDictionary object.

indent: (unsigned intevel
Included are the key and values that represent the locale
data fromocaleDictionary Elements are indented from
the left margin byevel+ 1 multiples of four spaces, to
make the output more readable.

Writes a textual description of the contents of the
receiver tdilename If useAuxiliaryFileis YES, the
data is written to a backup file and then, assuming no
errors occur, the backup file is renamed to the intended

file name.

— (BOOL)writeToFile: (NSString *path
atomically: (BOOL)useAuxiliaryFile

OpenStep Specification—10/19/94 Classes: NSDictionary 2-65

NSDistantObject

Inherits From: NSProxy

Conforms To: NSCoding
NSObject (NSProxy)

Declared In: Foundation/NSDistantObject.h

Class Description

The NSDistantObject class declares the programmatic interface to objects that serve as proxiesreatemote
objects.

Your application does not in general need to explicitly create NSDistantObject objects—they are created
automatically when you create NSConnection objects for a remote object.

Exceptions

NSDistantObject raises an NSinternallnconsistencyException for a variety of exceptions resulting from internal
consistency failures.

Building a Proxy

+ (NSDistantObject ProxyWithLocal: (id)target Builds and returns a local proxy for a local objacget,
connection(NSConnection *¢onnection forming a remote proxy on the other sideofnection

+ (NSDistantObject ProxyWithTarget: (id)target Builds and returns a remote proxy whexggetis an object
connection{NSConnection ®onnection on the other side aonnection

Initializing a Proxy

— (id)initwithLocal: (id)target Builds a local proxy for a local objetdrget, forming a
connection(NSConnection *yonnection remote proxy on the other sideaainnection You may
not retain or otherwise use this proxy.
— (id)initWithTarget: (id)target Builds a remote proxy whetargetis an object on the other
connection{NSConnection ®onnection side ofconnection It may deallocate and retunil if

this target is already known on the connection. This is
the designated initializer for subclasses.

2-66 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Specifying a Protocol

— (void)setProtocolForProxy:(Protocol *proto Sets the proxy’s protocol fwoto for efficiency.

Returning the Proxy’s Connection

— (NSConnection YonnectionForProxy Returns the NSConnection instance used by the proxy.

OpenStep Specification—10/19/94 Classes: NSDistantObject2-67

NSEnumerator

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSuUtilities.h

Class Description

NSEnumerator is a simple abstract class whose instances enumerate collections of other objects. Collection
objects—such as NSSets, NSArrays, and NSDictionaries—provide NSEnumerator objects that can traverse their
contents. You sendextObject repeatedly to an NSEnumerator to have it return the next object in the collection.
When there are no more objects to retaextObject returnsnil.

Collection classes include methods that return an enumerator appropriate to the type of collection. NSArray has
two methods that return an NSEnumerator ob@sjectEnumerator andreverseObjectEnumerator(the former
traverses the array starting at its first object, while the latter starts with the last object and continues backward
through the array to the first object). NSSetigectEnumerator provides an enumerator for sets. NSDictionary

has two enumerator-providing methoksyEnumerator andobjectEnumerator.

Note: Collections shouldn’t be modified during enumeration. NSEnumerator imposes this restriction to improve
enumeration speed.

Traversing a Collection

— (id)nextObject Returns the next object in the collection being enumerated
(for example, an NSArray or NSDictionary). Returns
nil when the collection has been traversed.

2-68 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSException

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSException.h

Class Description

The NSException class provides an object-oriented way for applications to announce and react to exceptional
conditions.

An exceptional condition is one that interrupts the normal flow of program execution. Each application can interpret
different types of conditions as exceptional. For example, one application might view as exceptional the attempt to
save a file in a directory that’s write-protected. In this sense, an exceptional condition can be equivalent to an error.
Another application might interpret the user’s keypress as an exceptional condition—an indication that a
long-running process should be aborted.

Raising an Exception

Once an exceptional condition is detected, it must be propagated to the routine or routines that will handle it, a
process referred to as “raising an exception.” In the OpenStep exception handling system, exceptions are raised by
instantiating an exception object and sending#ise message.

Exception objects encapsulate:
e aname. A short NSString that is used to uniquely identify the exception

* areason. A longer NSString that contains a “human-readable” reason for the exception. This reason object
is printed when the exception object is printed using the “%@” format.

» userinfo An NSDictionary object that you can use to supply application-specific data to the exception
handler. For example, if a function’s return value caused the exception to be raised, you could pass the return
value to the exception handler through tiserinfodictionary. Or, if the exception handler displays a panel
in response to the exceptiarserinfocould contain the text string to be displayed in the panel.

Handling an Exception

Sending aaise message to an exception object initiates the propagation of the exception and passes data about it.
Where and how the exception is handled depends on where you send the message from. Let’s first look at a simple
case.

In general, @aise message is sent to an exception object within the domain of an exception handler. An exception
handler is a control structure created by the macros NS_DURING, NS_HANDLER, and NS_ENDHANDLER.

OpenStep Specification—10/19/94 Classes: NSException 2-69

Function()

NS_DURING

exception handling —— [NSException raise...];
domain

local exception —— C &
handler e ——
NS_ENDHANDLER

return;

Figure 2-2. Exception Handling Domain and Handler

The section of code between NS_DURING and NS_HANDLER is the exception handling domain; the section
between NS_HANDLER and NS_ENDHANDLER is the local exception handler. The normal flow of program
execution is marked by the gray arrow; the code within the local exception handler is executed only if an exception
is raised. Sendingraise message to an exception object causes program control to jump to the first executable line
following NS_HANDLER, as indicated by the black arrow.

An exception can be raised directly within the exception handling domain, or indirectly from one of the methods

or functions invoked from the domain. No matter how deeply in a call sequence an exception is raised, execution
jumps to the local exception handler (assuming there are no intervening exception handlers, as discussed in the next
section). In this way, exceptions raised at a low level can be caught at a high level.

If an exception is raised and execution begins within the local exception handler, it either continues until all
appropriate statements are executed or the exception is raised again to invoke the services of an encompassing
exception handler, as described in the next section.

If the exception isn’t raised again, execution within the local exception handler continues until it leaves the local
handler by:

» ‘“Falling off the end”
« Calling NS_VALUERETURN()
e Calling NS_VOIDRETURN

Note: A simple return from the exception-handling domain is not permitted.

2-70 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

“Falling off the end” is simply the normal execution pathway introduced above. After all appropriate statements
within the domain are executed (and no exception is raised), execution continues on the line following
NS_ENDHANDLER. Alternatively, you can return control to the caller from within the domain by calling
NS_VALUERETURN() or NS_VOIDRETURN, depending on whether you need to return a value.

You can’t usegoto or return() to exit an exception handling domain—errors will result. Nor can yosaigap()
andlongjmp() if the jump entails crossing an NS_DURING statement. Since in many cases you won't know if the
code that your program calls has exception handling domains within it, it's generally not recommended that you
usesetjmp() andlongjmp() in your application.

Nested Exception Handlers

Exception handlers can be nested so that an exception raised in an inner domain can be treated by the local
exception handler and any number of encompassing exception handlers. The following diagram illustrates the use
of nested exception handlers, and is discussed in the text that follows.

top-level exception handler

4
Functionl()
Function2()
NS_DURING
Function3()
NS_DURING
Function2();
. NS_DURING
Function3();
NS_HANDLER
[NSException raise...J;
NS_HANDLER

[NSException raise...J;
NS_ENDHANDLER

return;

o \ NS_HANDLER
\ [NSException raise...]; -
NS_ENDHANDLER

return;

\ [NSException raise...];
NS_ENDHANDLER

return;

Figure 2-3. Nested Exception Handlers

An exception raised within Function3’'s domain causes execution to jump to its local exception handler. In a typical
application, this exception handler checks the values contained the NSException object to determine the nature of
the exception. For exception types that it recognizes, the local handler responds and therasendsessage to

the exception object to pass notification of the exception to the handler above it (in this case, the handler in

OpenStep Specification—10/19/94 Classes: NSException 2-71

Function2). Function2’s exception handler does the same and then raises the exception to Functionl’s handler.
Finally, Functionl’s handler re-raises the exception. Since there’s no exception handling domain above Functionl,
the exception is transferred to a default top-level error handler. For applications based on the Application Kit, this
top-level handler invokes NSApplicatiomsportException: method, which writes an error message to the

console.

An exception that’s re-raised appears to the next higher handler just as if the initial exception had been raised within
its own exception handling domain.

Raising an Exception Outside of an Exception Handler

If an exception is raised outside of any exception handler, it's intercepted by the uncaught exception handler, a
function set bjNSSetUncaughtExceptionHandler(and returned b SUncaughtExceptionHandler() You can

change the way uncaught exceptions are handled by NSiSgtUncaughtExceptionHandler(}o establish a

different procedure as the handler. However, because of the design of the Application Kit, it's rare for an exception
to be raised outside of an exception handling domain. The NSApplication object’s event loop itself is within an
exception handling domain. On each cycle of the loop, the NSApplication object retrieves an event and sends an
event message to the appropriate object in the application. Thus, the code you write for custom objects (as well as
the code for Application Kit objects) is executed within the context of the event loop’s exception handler.

Predefined Exceptions
OpenStep predefines a number of exception names. These exceptions areNiStextcieption.h for example:

extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;

For a complete list of global exception names, see the “Types and Constants” sections of this manual. You can catch
any of these exceptions from within your exception handler by comparing the exception’s name with these
predefined exception names.

Creating and Raising Exceptions

+ (NSException *¢xceptionWithName(NSString *name

reason{NSString *yeason Creates an exception object, assignintpineas its name,
userinfo: (NSDictionary *userinfo reasoms its human-readable explanation, aserinfo
as arbitrary data that will accompany the exception.
+ (volatile voidyaise:(NSString *name Creates and raises an exception with naaraeand
format: (NSString *format,... a reason constructed frdiarmatand the following

arguments in the manner printf() . The user-defined
information isnil. Invokesraise as part of its
implementation.

2-72 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

+ (volatile voidyaise:(NSString *name
format: (NSString *format
arguments:(va_listiargList

— (id)initwithName: (NSString *hame
reason({NSString *yeason
userinfo:(NSDictionary *userinfo

— (volatile voidyaise

Querying Exceptions

— (NSString *hame

— (NSString *yeason

— (NSDictionary *userinfo

OpenStep Specification—10/19/94

Creates and raises an exception with naaraeand
a reason constructed frdormatand the arguments in
argList in the manner ofprintf() . The user-defined
information isnil. Invokesraise as part of its
implementation.

Initializes a newly allocated exception object, assigning it
namas its nameregasonas its human-readable
explanation, andserinfoas arbitrary data that will
accompany the exception.

Raises the exception, causing program flow to jump to the
enclosing error handler.

Returns the exception’s name. See
exceptionWithName:reason:userinfo:

Returns the exception’s reason. See
exceptionWithName:reason:userinfo:

Returns the exception’s user-defined data. See
exceptionWithName:reason:userinfo:

Classes: NSException 2-73

NSInvocation

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Declared In: Foundation/NSInvocation.h

Class Description

Objects of the NSInvocation class provide a system-independent means to construct message calls to other objects.
An NSlInvocation object constructgargetobject to which a message can be sesglectorfor that method, an

argument lisfor the selector, and a return value. NSinvocation objects provide great flexibility in that the methods,
method arguments, and targets of the methods may be constructed dynamically.

The final sending of the message to the target object can be performed at any time, independent of constructing the
invocation. For example, methods could be dispatched based on timer events. In addition, return values from the
methods are stored in the NSinvocation object and can be retrieved at any later stage in processing.

Also see NSMethodSignature for a description of how to construct method signatures.

TheFoundation/NSInvocation.hheader file defines two macros that may be used as constructors for
invocations:

NSInvocation *invocation =NS_MESSAGE(arget message
builds an invocation containingmessag¢o a known
targetobject.targetis an object idmessageonsists of
a selector followed by any arguments, just like an
Objective-C message.

NSInvocation *invocation = NS_INVOCATION(class message
builds an invocation containing@essago the untargeted
class objectlass messageonsists of a selector
followed by any arguments, just like an Objective-C
message.

Creating Invocations

+ (NSInvocation *)nvocationWithMethodSignature: (NSMethodSignature ¥)g
Returns an invocation object able to construct calls to
objects using method selectors with type signatures
described bwig. Raises NSInvalidArgumentException
if sigisnil.

2-74 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Managing Invocation Arguments
— (BOOL)argumentsRetained

— (void)getArgument:(void *)argumentLocation
atindex: (int)index

— (void)getReturnValue:(void *)retLoc

— (NSMethodSignature methodSignature

— (voidyetainArguments

— (SEL)elector
— (void)setArgument:(void *)argumentLocation
atindex:(int)index

— (void)setReturnValue:(void *)retLoc

— (void)setSelector(SEL)selector
— (void)setTarget:(id)target

— (id)target

Dispatching an Invocation

— (void)nvoke

— (void)invokeWithTarget: (id)target

OpenStep Specification—10/19/94

Returns YES if arguments are retained.

Copies the argument storedradexinto the storage
pointed to byargumentLocationvhere 2 is the index of
the first argument, 3 is the index of the second, and so
on.

Copies the invocation’s return value into the storage
pointed to byretLoc

Returns the invocation’s method signature object.

By default, target and arguments are not retained, and C
strings are not copied. This method instructs the
invocation to retain its arguments, target, and make
copies of C strings. This method is invoked
automatically by timers. This method should be invoked
whenever the dynamic scope of the invocation can
exceed its arguments.

Returns the invocation’s selector.

Sets the argument storedradexto the storage pointed to
by argumentLocationvhere 2 is the index of the first
argument, 3 is the index of the second, and so on..

Sets the invocation’s return value to that indicated by
retLoc

Sets the invocation’s selectorgelector
Sets the invocation’s target target

Returns the invocation’s target; retumkif there is no
target.

Causes the message encoded in the invocation to be
dispatched to its target.

Causes the message encoded in the invocation to be
dispatched tdarget

Classes: NSinvocation 2-75

NSLock

Inherits From: NSObject
Conforms To: NSLocking

NSObject (NSObject)
Declared In: Foundation/NSLock.h

Class Description

An NSLock is used to protect critical regions of code. A lock is created once and is subsequently used to protect
one or more regions of code. If a region of code is in use, an NSLock waits ustogditeon_wait() function,

so the thread doesn’t busy-wait. The following example shows the use of an NSLock with the toekhadd

unlock defined in the NSLocking protocol:

NSLock *theLock = [NSLock new]; // done once!

[* ... other code */

[theLock lock];

/* ... possibly a long time of fussing with global data... */
[theLock unlock];

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the NSLocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

Acquiring a Lock

— (BOOL)ryLock Attempts to acquire a lock. Returns YES if successful and
NO otherwise. Returns immediately.

2-76 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSMethodSignature

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSMethodSignature.h

Class Description

NSMethodSignature provides the programmatic interface to objects that provide access to the “type signatures” of
an object’s methods—that is, the types of the arguments and return vahgth@d signatures used by the

distributed objects machinery to determine how to correctly encode method names and arguments for the
underlying inter-process communications. The typical use of method signatures is when a message is sent to a
remote objectia a proxy. If the proxy doesn’t know the types of arguments a remote object will use, the proxy first
has to query the remote object for its method signature object, which specifies the types the method requires as
arguments. The proxy then knows how to encode the data it has been passed and forward it correctly to the real
object.

You create a method signature object by sendsigraatureWithObjCTypes method to the NSMethodSignature
class object, passing a “C”-style character string which specifies the method’s return types and argument types.

Given a method signature, all other available instance methods query the object for information about the signature,
such as its return type, number of arguments, stack frame size (obviously architecture-dependent), and so on.

Also see NSinvocation for the class which can use method signature objects to send messages to other objects.

Creating a Method Signature

+ (NSMethodSignature gjgnatureWithObjCTypes:(const char ®ypes
Creates a method signature object gitygres a string
encoding the method return and argument types.

Querying a Method Signature

— (NSArgumentinfaargumentinfoAtindex: (unsignedndex
Returns information about the argumeninaex Indices
begin with 0. The “hidden” argumerdself and_cmd
are indexed at 0 and 1; method-specific arguments begin
at index 2. lfindexis too large for the actual number of
arguments, NSinvalidArgumentException is raised.

— (unsignedyamelLength Returns the number of bytes that the arguments, taken
together, would occupy on the stack.

OpenStep Specification—10/19/94 Classes: NSMethodSignature-77

— (BOOL)sOneway

— (unsignednethodReturnLength
— (char *methodReturnType

— (unsigned)umberOfArguments

2-78

Chapter 2: Foundation Kit

Returns YES if the method is asynchronous (that is, it
returns without waiting for the receiver to finish
processing it), and NO otherwise.

Returns the number of bytes required by the return value.

Returns a string encoding the return type of the method.
(What the characters in the string represent is usually
defined by some implementation-dependent runtime

types.)

Returns the number of arguments recorded in the receiver.
This will be at least two, since it includes the “hidden”
argumentsself and_cmd, which are the first two
arguments passed to every method implementation.

OpensStep Specification—10/19/94

NSMutableArray

Inherits From: NSArray : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSArray)
NSObject (NSObject)

Declared In: Foundation/NSArray.h

Class Description

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array of
objects. This class adds insertion and deletion operations to the basic array-handling behavior it inherits from
NSArray.

The array operations that NSMutableArray declares are conceptually based on these three methods:

addObject:
replaceObjectAtindex:withObject:
removelastObject

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the array
and of removing an object based on its identity or position in the array.

When an object is removed from a mutable array it receredeasemessage, which can cause it to be deallocated.
Note that if your program keeps a reference to such an object, the reference may become invalid unless you
remember to send the objeaetain message before it's removed from the array. For example, the third statement
below could result in a run-time error, except forrtain message in the first statement:

id anObject = [[anArray objectAtindex:0] retain];
[anArray removeObjectAtindex:0];
[anObject someMessage];

Implementing Subclasses of NSMutableArray

Although conceptually the interface to the NSMutableArray class is based on the three methods listed above, for
performance reasons two othensisertObject:atindex: andremoveObjectAtindex:—also directly access the

object’s data. These two methods could be implemented using the methods listed above but in doing so would incur
unnecessary overhead from tie¢ain andreleasemessages that objects would receive as they are shifted to
accommodate the insertion or deletion of an element. Thus, if you create a subclass of NSMutableArray, you should
override all five primitive methods so that the other methods in NSMutableArray’s interface work properly.

Creating and Initializing an NSMutableArray

+ (id)allocWithZone:(NSZone *yone Creates and returns an uninitialized NSMutableArray in
zone.

OpenStep Specification—10/19/94 Classes: NSMutableArray 2-79

+ (id)arrayWithCapacity: (unsigned inANumlitems Creates and returns an NSMutableArray, giving it enough
allocated memory to holdumltemsbjects.

— (id)initwithCapacity: (unsigned ing@Numltems Initializes a newly allocated NSMutableArray, giving it
enough memory to holdumltemsobjects.

Adding Objects

— (void)addObject:(id)anObject InsertsanObjectat the end of the array. Raises
NSInvalidArgumentException &nObjectis nil.

— (voidjaddObjectsFromArray: (NSArray *)JanotherArray
Adds the objects contained amotherArrayto the end of
the receiver’s array.

— (void)insertObject: (id)anObjectatindex: (unsigned inihdex
InsertsanObject into the array atdex Raises
NSlInvalidArgumentException #nObjectisnil. Raises
NSRangeException ihdexis outside of the bounds of

the array.
Removing Objects
— (voidyemoveAllObjects Empties the array of all its elements.
— (voidyemovelastObject Removes the last object in the array and sendlease

message. Raises NSRangeException if there are no
objects in the array.

— (voidyemoveObject;(id)anObject Removes all occurrences afiObjectisEqual: is used to
test foranObject

— (voidyemoveObjectAtindex:(unsigned infndex Removes the object atdexand moves all elements
beyondindexup one slot to fill the gap. Raises
NSRangeException ihdexis outside of the bounds of
the array.

— (voidyemoveObjectldenticalTo:(id)anObject Removes all elements having the sadhasanObject

— (voidyemoveObjectsFromindices(unsigned int*)ndices
numindices:(unsigned intyount Removes objects at the positions specified inrtiees
array, which hasountelements. Raises
NSRangeException if any of thedicesis outside of
the bounds of the array. This method is provided for
efficiency reasons; it will not work if the receiver is a
proxy to an array in another process.

— (voidyemoveObjectsinArray: (NSArray *)otherArray
Removes from the receiver the objects founatirerArray

2-80 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Replacing Objects

— (voidyeplaceObjectAtindex:(unsigned infhdex Replaces the object etdexwith anObject Raises

withObject: (id)anObject NSInvalidArgumentException &nObjectisnil. Raises
NSRangeException ihdexis not within the bounds of
the array.
— (void)setArray: (NSArray *)otherArray Sets the contents of the receiver to the elements in
otherArray

Sorting Elements

— (void)sortUsingFunction:(int (*)(id elementlid element2oid *userDatg)comparator
context:(void *)context Sorts the receiver’s elements in ascending order as defined
by the comparison functiccomparator contextis
passed as the function’s third argument.

— (void)sortUsingSelector(SEL)}comparator Sorts the receiver’s elements in ascending order as defined
by the comparison methadmparator

OpenStep Specification—10/19/94 Classes: NSMutableArray 2-81

NSMutableCharacterSet

Inherits From: NSCharacterSet : NSObject

Conforms To: NSCopying, NSMutableCopying
NSCoding, NSCopying, NSMutableCopying (NSCharacterSet)
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSMutableCharacterSet class declares the programmatic interface to objects that construct mutable
descriptionsof character sets in the Unicode character encoding. Ha ving constructed such character set
descriptions using methods described in the NSCharacterSet class, you can use the methods described here to
modify the character sets dynamically.

Adding and Removing Characters

— (voidyaddCharactersinRange(NSRangeaRange Adds to the receiver the Unicode characters whose values
are given byaRange

— (void)addCharactersinString: (NSString *)aString Adds the characters afStringto those in the receiver.

— (voidyemoveCharactersinRange(NSRangedRange
Removes from the receiver the Unicode characters whose
values are given bgRange

— (voidyemoveCharactersInString:(NSString *)aString
Removes from the receiver the characteString

Combining Character Sets

— (voidYformintersectionWithCharacterSet: (NSCharacterSet 8therSet
Modifies the receiver so that it contains only those
characters that exist in both the receiver arathierSet

— (void¥ormUnionWithCharacterSet: (NSCharacterSet therSet
Modifies the receiver so that it contains all characters that
exist in either the receiver otherSetbarring
duplicates.

2-82 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Inverting a Character Set

— (void)invert Replaces all of the characters in the receiver with all the
characters it didn’t previously contain.

OpenStep Specification—10/19/94 Classes: NSMutableCharacterSeét-83

NSMutableData

Inherits From: NSData : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSData)
NSObject (NSObject)

Declared In: Foundation/NSData.h

Foundation/NSSerialization.h

Class Description

The NSMutableData class declares the programmatic interface to objects that contain modifiable data in the form
of bytes. This class inherits all read-only access methods from its superclass, NSData, and declares only those
methods that permit the modification of the data.

NSMutableData’s two primitive methodsrutableBytesandsetLength—provide the basis for all the other
methods in its interface. TheutableBytesmethod returns a pointer for writing into the bytes contained in the
mutable data objectetLength: allows you to truncate or extend the length of a mutable data object.

TheappendBytes:length:andappendData: methods let you append bytes or the contents of another data object
to a mutable data object. You can replace a range of bytes in a mutable data object with either zeroes (using the
resetBytesinRange:method), or with different bytes (using treplaceBytesinRange:withBytes:method).

This class declares various serialization methods that enable architecture-independent serialization of arbitrary
Objective C types.

Creating an NSMutableData Object

+ (id)allocWithZone:(NSZone *fone Creates and returns an uninitialized mutable data object
from zone

+ (id)dataWithCapacity: (unsigned infjumBytes Creates and returns a mutable data object, initially
allocating enough memory to haddimBytedytes.

+ (id)datawithLength: (unsigned infength Creates and returns a mutable data object, giving it enough
memory to holdengthbytes. Fills the object with
zeroes up ttength

— (id)initWithCapacity: (unsigned ingapacity Initializes a newly allocated mutable data object, giving it
enough memory to holchpacitybytes. Sets the length
of the data object to 0.

— (id)initwithLength: (unsigned infength Initializes a newly allocated mutable data object, giving it
enough memory to holengthbytes. Fills the object
with zeroes up ttength

2-84 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Adjusting Capacity

— (void)increaseLengthBy(unsigned ingxtraLengthincreases the length of a mutable data object by

— (void *)mutableBytes

— (void)setLength:(unsigned infength

Appending Data

— (voidyappendBytes(const void *pytes
length:(unsigned infength

— (voidyappendDataiNSData *pther

Modifying Data
— (voidyeplaceBytesinRange(NSRangedRange
withBytes:(const void *pytes

— (voidyesetBytesInRange{NSRangeaRange

Serializing Data

extraLengthzero-filled bytes.

Returns a pointer to the bytes in a mutable data object,
enabling you to modify the bytes.

Extends or truncates the length of a mutable data object by
lengthbytes. If the mutable data object is extended, the
additional bytes are zero-filled.

Appenddengthbytes to a mutable data object from
the bufferbytes

Appends the contents of the data obgberto the
receiver.

Replaces the receiver’s bytes locatedRangewith bytes
Raises an NSRangeExceptiomRanges not within
the range of the receiver's data.

Replaces the receiver’s bytes locatedRangewith zeros.
Raises an NSRangeExceptiomRanges not within
the range of the receiver's data.

— (void)serializeAlignedBytesLength(unsigned infength

— (void)serializeDataAt:(const void *Hata
ofObjCType: (const char *ype
context:

Prepares bytes for @ppendBytes:length:invocation by
serializing them. If théengthof the bytes will cause
extension past the page size, this method encodes
header information, creating a hole so that all bytes in
the data object are aligned on page boundaries.

Serializes whatever data element is referencedibkey
interpreting it by the Objective C type specitigre
If the data element is an object other than an instance of

(id <NSObjCTypeSerializationCallBackzgllback NSDictionary, NSArray, NSString, or NSData, further

OpenStep Specification—10/19/94

definition of the object can occur through a callback
from objectcallback All Objective C types are
currently supported excephionsandvoid *. Pointers
refer to a single item.

Classes: NSMutableData 2-85

2-86

(void)serializelnt: (int)value

(void)serializelnt: (int)value
atindex:(unsigned inthdex

(void)serializelnts:(int *)intBuffer
count:(unsigned infhumints

(void)serializelnts:(int *)intBuffer
count:(unsigned intyumints
atindex:(unsigned inthdex

Chapter 2: Foundation Kit

Serializes the integemalueby encoding it as a character
representation.

Serializes the integetalueby encoding it as a character
representation and replaces the encoded value at the
specifiedndexin the data.

Serializenumintscount of integers imtBufferby
encoding each integer as a character representation.

Serializenumintscount of integers imtBuffer by
encoding each integer, starting at the specified
indexand replacing each corresponding integer
encoding serially.

OpensStep Specification—10/19/94

NSMutableDictionary

Inherits From: NSDictionary : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSDictionary)
NSObject (NSObject)

Declared In: Foundation/NSDictionary.h

Class Description

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable associations
of keys and values. With its two efficient primitive methodetObject:forKey: andremoveObject:forkey:—
this class adds modification operations to the basic operations it inherits from NSDictionary.

The other methods declared here operate by invoking one or both of these primitives. The derived methods provide
convenient ways of adding or removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects that make up the entry receive a
releasemessage, which can cause them to be deallocated. Note that if your program keeps a reference to such
objects, the reference will become invalid unless you remember to send the ofaict message before it's

removed from the dictionary. For example, the third statement below could result in a run-time error, except for the
retain message in the first statement:

id anObject = [[aDictionary ~ objectForKey: theKey] retain];
[aDictionary ~ removeObjectForKey: theKey 1;
[anObject someMessage];

Allocating and Initializing

+ (id)allocWithZone:(NSZone *yone Creates and returns an uninitialized NSMutableDictionary
in zone

+ (id)dictionaryWithCapacity: (unsigned in@Numitems
Creates and returns an NSMutableDictionary, giving it
enough allocated memory to haldmEntriesentries.

— (id)initWithCapacity: (unsigned in@@Numltems Initializes a newly allocated NSMutableDictionary, giving
it enough allocated memory to haldmEntrieentries.

OpenStep Specification—10/19/94 Classes: NSMutableDictionary2-87

Adding and Removing Entries

2-88

(void)addEntriesFromDictionary: (NSDictionary *ptherDictionary
Adds the entries froratherDictionaryto the receiver.

(voidyemoveAllObjects Empties the receiver of its entries.

(voidyemoveObjectForKey:(id)theKey RemovedheKeyand its associated value object from the
dictionary. Raises NSInvalidArgumentException if
aKeyisnil.

(voidyemoveObjectsForKeys(NSArray *)keyArray
Removes from the receiver one or more entries as identified
by the keys irkeyArray

(void)setObject(id)anObject Adds an entry to the receiver, consistingie®bjectand its
forKey: (id)aKey corresponding kegKey Raises
NSlInvalidArgumentException if eithenObjector
aKeyis nil.

(void)setDictionary:(NSDictionary *)ptherDictionary
Sets the contents of the receiver to the keys and values in
other.

Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSMutableSet

Inherits From:

Conforms To:

Declared In:

Class Description

NSSet : NSObject

NSCoding, NSCopying, NSMutableCopying (NSSet)
NSObject (NSObject)

Foundation/NSSet.h

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of objects.
NSMutableSet provides support for the mathematical concemstfAaset, both in its mathematical sense, and in
the OpenStep implementation of NSMutableSet, isramrderedcollection of distinct elements. OpenStep also

provides the NSCountedSet class for a mutable set that can contain multiple instances of the same element, and
provides the NSSet class for creating and managing immutable sets. In general, you should use NSSet unless you
really need a mutable set.

Use set objects as an alternative to array objects when the order of elements is not important, but performance in
testing whether an object is contained in théssatconsideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respondhsh andisEqual: methods. See the NSObject protocol for detailbash and
isequal:.

Generally, you instantiate an NSMutableSet object by sending oneseftthenethods to the NSMutableSet class
object, as described in the method descriptions for NSSet. These methods return an NSMutableSet object
containing the elements (if any) you pass in as arguments. Newly created instances of NSMutableSet created by
invoking thesetmethod can be populated with objects using any afhthe. methodsinitwWithObjects:: is the
designated initializer for this class.

Objects are added to an NSMutableSet uathdObject:, which adds a single specified object to the set,
addObjectsFromArray: , which adds all objects from a specified array to the set, oniopSet:, which adds all
the objects from another set to this set.

Objects are removed from an NSMutableSet using any of the meéthedsctSet; minusSet;
removeAllObjects, orremoveObject..

OpenStep Specification—10/19/94 Classes: NSMutableSet2-89

Allocating and Initializing an NSMutableSet
+ (id)allocWithZone:(NSZone *fone

+ (id)setWithCapacity:(unsignedjumlitems

— (id)initwithCapacity: (unsignedjumitems

Adding Objects
— (voidyaddObiject:(id)object

— (void)addObjectsFromArray: (NSArray *)array

— (voidunionSet:(NSSet *pther

Removing Objects

— (void)intersectSet(NSSet *pther

— (void)minusSet{NSSet *pther

— (voidyemoveAllObjects

— (voidyemoveObiject;(id)object

2-90 Chapter 2: Foundation Kit

Creates and returns an uninitialized set objezbire.

Creates and returns a set object, giving it enough allocated
memory to holchumltemsobjects.

Initializes a newly allocated set object, giving it enough
allocated memory to holdumltemsbjects.

Addsobjectto the set, unlessbjectis equal to some object
already in the set.

Adds to the set all the objectsarray, by calling
addObject: for each one.

Adds to the receiving set all the object®iher, by calling
addObiject: for each one.

Removes from the receiving set every object that’s not
equal to any object iather, by callingremoveObject:
for each one.

Removes from the receiving set every object that's equal to
some object imther, by callingremoveObiject: for
each one.

Empties the set of all its elements. (This method doesn't
call removeObject:)

If any member of the receiving set is equablbject this
method removes that object from the set.

OpensStep Specification—10/19/94

NSMutableString

Inherits From: NSString : NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying (NSString)
NSObject (NSObject)

Declared In: Foundation/NSString.h

Class Description

NSMutableString (and NSString) declare the programmatic interface for objects that create and managemutable
representation-independeciaracter strings. For a more general overview of string classes, see the description of
NSString.

NSMutableString (and NSString) are abstract classes for string manipulation. NSMutableString declares the
interface to objects that inherit all the capabilities of NSString objects, but in addition allow for modification of the
string data. NSString and NSMutableString provide factory methods that return autoreleased instances of
unspecified subclasses of strings.

You can instantiate an NSMutableString object by sending any sfrihgWith ... methods to the
NSMutableString class object. This set of methods also inclodalizedStringWithFormat: . A newly allocated
NSMutableString object can also be initialized usingnit@/ithCapacity : method, to set the string to a specified
capacity.

Creating Temporary Strings

+ (NSMutableString #pcalizedStringWithFormat: (NSString *format...

Returns a string created by usfiogmatas gprintf() style
format string, and the following arguments as values to
be substituted into the format string. The user’s default
locale is used for format information.

+ (NSMutableString *§tringWithCString: (const char *2eroTerminatedBytes
Returns a mutable string containing the characters in
zeroTerminatedBytesvhich must be null-terminated.
ThezeroTerminatedBytesring should contain bytes in
the default C string encoding.

+ (NSMutableString *3tringWithCString: (const char *ytes
length:(unsigned infength Returns a mutable string containieggthcharacters made
from bytes This method doesn't stop at a null byte.
bytesshould contain bytes in the default C string
encoding.

OpenStep Specification—10/19/94 Classes: NSMutableString 2-91

+ (NSMutableString *3tringWithCapacity: (unsigned intyapacity
Returns an empty mutable string, usaagpacityas a hint
for how much initial storage to reserve.

+ (NSMutableString *§tringWithCharacters: (const unichar ®haracters
length:(unsigned inflength Returns a mutable string containicigaracters The first
lengthcharacters are copied into the string. This method
doesn'’t stop at a null character.

+ (NSMutableString *3tringWithContentsOfFile: (NSString *path
Returns a string containing the contents of the file specified
by path This method attempts to determine the
encoding for the file. The string is assumed to be in
Unicode encoding, but if the encoding is determined not
to be Unicode, the default C string encoding is used
instead.

+ (NSMutableString *3tringWithFormat: (NSString *format,...

Returns a mutable string created by ugorghatas a
printf() style format string, and the subsequent
arguments as values to be substituted into the format
string.

Initializing a Mutable String

—initWithCapacity: (unsigned intyapacity Initializes a newly allocated mutable string object, giving it
enough allocated memory to haldpacitycharacters.

Modifying a String

— (void)appendFormat:(NSString *format,... Adds a constructed string to the receiver. The new
characters are created by udioignatas gorintf() style
format string, and the following arguments as values to
be substituted into the format string. Invokes
replaceCharactersinRange:withString: as part of its
implementation.

— (voidlappendString:(NSString *aString Adds the characters afstringto end of the receiver.
InvokesreplaceCharactersinRange:withString: as
part of its implementation.

— (voiddeleteCharactersinRange(NSRangeange
Removes from the receiver the characterainge This
method raises an NSStringBoundsError exception if
any part ofrangelies beyond the end of the string.
InvokesreplaceCharactersinRange:withString: as
part of its implementation.

2-92 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (void)insertString: (NSString *aString Inserts the characters aBtringinto the receiver, such that
atindex: (unsignedndex the new characters beginiatlexand the existing
character fronndexto the end are shifted by the length
of aString This method raises an NSStringBoundsError
exception ifindexlies beyond the end of the string.
InvokesreplaceCharactersinRange:withString: as
part of its implementation.

— (voidyeplaceCharactersinRange{NSRangedRange
withString: (NSString *aString Inserts the characters a®tringinto the receiver, such that
they replace the charactersaRange This method
raises an NSStringBoundsError exception if any part of
aRangdies beyond the end of the string.

— (void)setString:(NSString *aString Replaces the characters of the receiver with those in
aString

OpenStep Specification—10/19/94 Classes: NSMutableString 2-93

NSNotification

Inherits From: NSObject
Conforms To: NSCopying

NSObject (NSObject)
Declared In: Foundation/NSNotification.h

Class Description
NSNoatification objects provide a flexible way to transmit event information between objects.

Message passing—invoking a method—is the standard way to convey information between objects. However, this
requires the object sending the message to know who the receiver is. At times this explicit binding of two objects
is undesirable—most notably because it would tie two otherwise independent subsystems. For these instances, a
looser broadcast model is introduced: An object posts a notification, which is dispatched to the appropriate
receivers through a notification center.

An object may post an NSNotification object (referred to mstidication objecor simply, anotificatior), which

contains information about an object: the notification’s name, its sender, and an optional dictionary containing other
information. Other objects can register themselves as observers to receive notification objects when they are posted.
When the event happens, the registered objects receive notifications about it. The object posting the NSNotification
object, the object the notification is about, and the observer of the notification may all be different objects.

An NSNotificationCenter object registers observers for events and notifies the observers if these events occur. An
object may ask an NSNotificationCenter object (also knowmasfication centerto observe an event regarding
another object. If the event occurs, the posting object tells the notification center to notify its observers that this
condition has occurred. The notification center then sends a natification to all observing objects. (See the class
specification of NSNotificationCenter for more on posting notification objects.)

This notification model frees an object from concern about what objects may want to observe it. An object involved
with an event—or another object—may simply post a notification about that event without knowing what objects—
if any—are observing the event. The notification center takes care of distributing notifications to registered
observers. Another benefit of this model is to allow multiple objects to listen for notifications, an effect that might
otherwise require explicitly setting up an array.

You instantiate a notification object directly by sendingnbificationWithName:object: or
notificationWithName:object:userinfo: messages to the NSNotification class object. You can also create
notifications indirectly through the NSNotificationCenter class usingdktNotificationName:object: and
postNotificationName:object:userinfo: convenience methods.

You can subclass NSNotification to contain information in addition to the notification name, sender, and dictionary.

NSNotification objects are immutable objects.

2-94 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

The NSNotification class adopts the NSCopying protocol, making it possible to treat notifications as
context-independent values that can be copied and reused. You can put notifications in an array antbpgnd the

message to that array, which recursively copies every item. This essentially allows clients to deal with notifications
as first class values that can be copied by collections.

Creating Notification Objects

+ (NSNoatification *notificationWithName: (NSString *aName
object:(id)anObject Returns a notification object that associates the name
aNamewith the objecanObject
+ (NSNotification *notificationWithName: (NSString *aName

object:(id)anObject Returns a notification object that associates the name
userinfo:(NSDictionary *userinfo aNamavith the objecanObjectand the dictionary of
arbitrary datauserinfo userinfomay benil.

Querying a Notification Object

— (NSString *pame Returns the name of the notification.

— (id)object Returns the object (such as the sender) that’s associated
with this notification.
— (NSDictionary *userinfo Returns a dictionary object associated with this

notification. Returnsil if there is no such object.

OpenStep Specification—10/19/94 Classes: NSNotification 2-95

NSNotificationCenter

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSNotification.h

Class Description

An NSNotificationCenter object (or simphptification centeris essentially a notification dispatch table. It notifies

all observers of events meeting specific criteria of notification and sender. This event information is encapsulated
in NSNotification objects, also known astification objectsor simply, notifications Client objects register

themselves as observers of a specific notification originating in another object. When the condition occurs to signal
a notification, some object (which may or may not be the object observed) posts an appropriate notification object
to the notification center. (See the class specification of NSNotification for more on notification objects.) The
notification center dispatches a message to each observer (using the selector provided by the observer), with the
notification as the sole argument.

An object registers itself to observe notifications byati@Observer:selector:name:objectmethod, specifying
the object and associated notification it wants to see. However, the observer need not specify both of these
parameters. If it specifies only the object, it will sllenotifications associated with that object. If the object
specifies only a notification name to observe, it will see that notificati@njarbject whenever it's posted.

The methodgostNotificationName:object: andpostNotificationName:object:userinfo: are provided as
convenience methods, which both create and post notifications.

Each task has a default notification center.

As an example of using the notification center, suppose your program can perform a number of conversions on text
(for instance, MIF to RTF or RTF to ASCII). You have defined a class of objects that perform those conversions,
Convertor. Convertor objects might be added or removed during program execution. Your program has a client
object that wants to be notified when convertors are added or removed, allowing the application to reflect the
available options in a pop-up list. The client object would register itself as an observer by sending the following
messages to the notification center:

[[NSNoatificationCenter defaultCenter] addObserver:self
selector: @selector(objectAddedToConvertorList:)
name:@"NSConverterAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(objectRemovedFromConvertorList:)
name:@"NSConverterRemoved" object:nil];

2-96 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

When a user installs or removes a converter, the Convertor sends one of the following messages to the notification
center:

[[NSNoatificationCenter defaultCenter]
postNotificationName: @"NSConverterAdded" object:self];

or

[[NSNotificationCenter defaultCenter]
postNotificationName: @"NSConverterRemoved" object:self;

The notification center identifies all observers who are interested in the “NSConverterAdded” or
“NSConverterRemoved” notifications by invoking the method they specified in the selector argument of
addObserver:selector:name:object: In the case of our example observer, the selectors are
objectAddedToConvertorList: andobjectRemovedFromConvertorList.. Assume the Convertor class has an
instance methodonvertorNamethat returns the name of the Convertor object. Then the
objectAddedToConvertorList: method might have the following implementation:

- (void)objectAddedToConvertorList:(NSNotification *)notification
{

Convertor *addedConvertor = [notification object];

/I Add this to our popup (it will only be added if not there)...
[myPopUpButton addltem:[addedConvertor convertorName]];

}

The convertors don’'t need to know anything about the pop-up list or any other aspect of the user interface to your
program.

Accessing the Default Notification Center
+ (NSNoatificationCenter JefaultCenter Returns the default notification center object; used for

generic notifications.

Adding and Removing Observers

— (void)addObserver:(id)anObserver RegisteraanObservelandaSelectomwith the receiver so
selector(SEL)aSelector thatanObservereceives amSelectomessage when a
name:(NSString *aName notification of nam@aNameis posted to the notification
object:(id)anObject center byanObject If anObjectis nil, observer will get

posted whatever the object isaflameis nil, observer
will get posted for all notifications that matahObject

— (voidyemoveObserver(id)anObserver RemovesainObservems the observer of any notifications
from any objects.
— (voidyemoveObserver(id)anObserver RemovesainObservems the observer aName
name:(NSString *aName notifications fromanObject

object:anObject

OpenStep Specification—10/19/94 Classes: NSNotificationCenteR2-97

Posting Notifications
— (void)postNotification:(NSNotification *aNotification

PostsaNotificationto the notification center. Raises
NSInvalidArgumentException if the name associated
with aNotificationis nil.

— (void)postNotificationName(NSString *aName Creates a notification object that associatéameand

object:(id)anObject anObjecand posts it to the notification center.

— (void)postNotificationName(NSString *aName Creates a notification object that associatéameand
object:(id)anObject anObjecand posts it to the notification centeserinfo
userinfo:(NSDictionary *userinfo is a dictionary of arbitrary data that will be passed with

the notificationuserinfomay benil.

2-98 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSNotificationQueue

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSNotificationQueue.h

Class Description

NSNotificationQueue objects (or simphgtification queuédsact as buffers for notifications centers (instances of
NSNoatificationCenter). A notification queue maintains notifications (instances of NSNaotification) generally in a
FIFO order (First In First Out). When a notification rises to the “top” of the queue, the queue posts it to the
notification center, which in turn dispatches the notification to all objects registered as observers.

NSNotificationQueue contributes two important features to OpenStep’s notification mechanism: asynchronous
posting and the coalescing of notifications. With NSNotificationCermest\otification: and its variants, you can

post a notification immediately to a notification center. However, the invocation of the method is synchronous:
Before the posting object can resume its thread of execution, it must wait until the notification center dispatches the
notification to all observers and returns. With NSNotificationQuezrgjsieueNotification:postingStyle:and
enqueueNotification:postingStyle:coalesceMask:forModeshowever, you can post a notification

asynchronously by putting it on the queue. These methods immediately return to the invoking object after putting
the notification in the queue.

Posting to a notification queue can occur in one of three different styles. The posting style is an argument to both
enqueueNotification:...methods:

» NSPostWhenldle The natification is posted when the run loop is idle.
* NSPostASAP The notification is posted as soon as possible.
* NSPostNow The natification is posted immediately to the notification center.

Note: See “Enqueuing with the Different Posting Styles,” below, for details on and examples of enqueuing
notifications with the threpostingStyle: constants.

What is the difference between enqueuing notifications M&@RostNowand posting notifications
(postNotification:)? Both post notifications immediately (but synchronously) to the notification center. The
difference is thaénqueueNotification:...(with NSPostNowas posting style) coalesces notifications in the queue
before posting whil@ostNotification: does not.

OpenStep Specification—10/19/94 Classes: NSNotificationQueue-99

Coalescing is a process that removes notifications in the queue that are similar to the notification just enqueued (or
posted, if posting style MSPostNow The notification queue scans the notifications in the queue for those with
attributes matching the new notification and removes them, except for the notification that is topmost in the queue
(closest to being posted). You indicate the criteria for similarity by specifying the NSNotificationCoalescing
constants in the third argumentarfqueueNoatification:postingStyle:coalesceMask:forModeg4OR them in if

multiple):

* NSNotificationNoCoalescing Do not coalesce notifications in the queue.
» NSNotificationCoalescingOnNameCoalesce notifications with the same name.
« NSNotificationCoalescingOnSenderCoalesce notifications with the same sender.

Every task has a default notification queue, which is associated with the task’s default notification center. You can
create your own notification queues, and have multiple queues per center and task; but you can have only one
notification center per task. NSNotificationQueue is a public, concrete class; instances of it are mutable.

Enqueuing with the Different Posting Styles

Any notification enqueued with ti¢SPostASAPposting style is posted to the notification center when the code
executing in the current run loop callout completes. Callouts can be Application Kit event messages, file descriptor
changes, timers, or another asynchronous notification. You'd typically uBkS®PestASAPposting style for an
expensive resource, like the Display PostScript server. When many clients draw on the window buffer during a
callout, it's expensive to flush the buffer to the Display PostScript server after every draw operation. So in this case,
eachdraw... method enqueues some notification such as “FlushTheSentkertoalescing on name and sender
specified, and a posting styleNEPostASAP As a result, only one of those notifications is dispatched at the end

of the current callout, and the window buffer is flushed only once.

A notification enqueued with théSPostldle posting style is posted only when the run loop is in a wait state. In

this state, there is nothing in the run loop’s input channels, be it timers or other asynchronous notifications. A typical
example of enqueuing with tiNSPostldleposting style occurs when the user types text, and the program displays
the size of the text in bytes somewhere. It would be very expensive (and not very useful) to update the displayed
size after each character the user types, especially if the user types fast. In this case, the program enqueues a
notification after each character typed such as “ChangeTheDisplayedSize” with coalescing turned on and a posting
style of NSPostWhenldle When the user stops typing, the single “ChangeTheDisplayedSize” notification in the
gueue (due to coalescing) is posted when the run loop is in a wait state and the display is updated.

A natification enqueued witNSPostNowis posted immediately to the notification center. You enqueue a
notification withNSPostNow(or post one with NSNotificationCentepsstNotification:) when you do not

require asynchronous calling behavior. For many programming situations, synchronous behavior is not only
allowable but desirable; you want the notification center to return after dispatching so you can be sure that
observing objects have received the natification. Of course, you should enqueNS&RastNowrather than use
postNotification: when there are similar notifications in the queue that you want to remove through coalescing.

2-100 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Creating Notification Queues

+ (NSNotificationQueue fefaultQueue Returns the default NSNotificationQueue object for the
current task. This object always uses the default
notification-center object for the same task.

— (id)init Initializes and returns an NSNotificationQueue object that
uses the default notification-center object.

— (id)initwithNotificationCenter: (NSNotificationCenter HotificationCenter
Initializes and returns an NSNotificationQueue object that
uses the notification-center object specified in
notificationCenter

Inserting and Removing Notifications From a Queue

— (void)equeueNatificationsMatching(NSNotification *notification
coalesceMask(unsigned infjoalesceMask Removes all notifications from the queue that match the
notificatioris attributes as specified lopalesceMask
The mask (set through NSNotificationCoalescing
constants) can specify notification name, notification
sender, or both name and sender.

— (voidengqueueNotification(NSNotification *notification
postingStyle(NSPostingStylg)ostingStyle Puts anotificationin the queue that the queue will post to
thenotification center at the time indicated by
postingStyleT he notification queue posts in all runloop
modes, and it coalesces only notifications in the queue
that match both the name and senderatification

— (void)engueueNotification(NSNotification *notification
postingStyle(NSPostingStylgostingStyle Puts anotificationin the queue that the queue will post to
coalesceMaskunsigned intyoalesceMask the notification center at the time indicated by
forModes:(NSArray *)modes postingStyleut only if the runloop is in a mode
identified by one of the string objects in thedes
array. The notification queue coalesces related
notifications in the queue as specifiedbglesceMask
If modedsnil, all runloop modes are valid for posting.

OpenStep Specification—10/19/94 Classes: NSNotificationQueu101

NSNumber

Inherits From: NSValue : NSObject

Conforms To: NSCoding, NSCopying (NSValue)
NSObject (NSObject)

Declared In: Foundation/NSValue.h

Class Description

NSNumber objects provide an object-oriented wrapper for the standard C-language number datg timasi€,
etc.). The Foundation Kit’s collection classes can store only objects, so this class provides a way to prepare numbers
of various types for use with the collection classes.

NSNumber, which inherits from NSValue, provides methods for creating number objects that contain data of a
specified type. It also provides methods for extracting data from a number object and casting the data to be of a
particular type. For determining whether two number objects are equal, NSNumber providesghaee: method.

Allocating and Initializing

+ (NSNumber *humberWithBool: (BOOL)value Creates and returns a humber object represevding of
the typeBOOL.

+ (NSNumber *humberWithChar: (charyalue Creates and returns a number object represeviilng of
the typechar.

+ (NSNumber *humberWithDouble: (doubleyalue
Creates and returns a number object represewdiiog of
the typedouble.

+ (NSNumber *humberWithFloat: (float)value Creates and returns a number object represewxdiing of
the typefloat.

+ (NSNumber *humberWithint: (int)value Creates and returns a number object represeviilng of
the typeint.

+ (NSNumber *humberWithLong: (long)value Creates and returns a number object represeviilng of
the typelong.

+ (NSNumber *humberWithLongLong: (long longyalue
Creates and returns a number object represewxdilng of
the typelong long.

+ (NSNumber *humberWithShort: (shortyalue Creates and returns a number object represeviilng of
the typeshort.

2-102 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

+ (NSNumber *humberWithUnsignedChar:(unsigned chavalue
Creates and returns a number object represevaiig of
the typeunsigned char

+ (NSNumber humberWithUnsignedInt: (unsigned intyalue
Creates and returns a number object represewdiig of
the typeunsigned int

+ (NSNumber *humberWithUnsignedLong:(unsigned long)alue
Creates and returns a number object represeviilug of
the typeunsigned long

+ (NSNumber *humberWithUnsignedLongLong:(unsigned long longgrlue
Creates and returns a number object represevaiig of
the typeunsigned long long

+ (NSNumber *humberWithUnsignedShort:(unsigned shortalue
Creates and returns a number object represewdiig of
the typeunsigned short

Accessing Data

— (BOOL)YoolValue Returns the receiver’s value as a boolean value.

— (chargharVvalue Returns the receiver’s value as a character value.

— (doublejloubleValue Returns the receiver’s value as a double precision floating
point value.

— (float¥loatValue Returns the receiver’s value as a single precision floating
point value.

— (int)intValue Returns the receiver’s value as a integer value.

— (long longlongLongValue Returns the receiver’s value as a long long double precision
floating point value.

— (long)ongValue Returns the receiver’s value as a long double precision
floating point value.

— (shortyhortValue Returns the receiver’s value as a short integer value.

— (NSString *stringValue Returns the receiver’s value as a string contained in an
NSString object.

— (unsigned chamnsignedCharValue Returns the receiver’s value as an unsigned character value.

— (unsigned int)nsignedintValue Returns the receiver’s value as an unsigned integer value.

— (unsigned long longnsignedLongLongValue Returns the receiver’s value as an unsigned long long
double precision floating point value.

OpenStep Specification—10/19/94 Classes: NSNumbeg-103

— (unsigned longinsignedLongValue Returns the receiver’s value as an unsigned long double
precision floating point value.

— (unsigned shontnsignedShortValue Returns the receiver’s value as an unsigned short integer
value.

Comparing Data

— (NSComparisonResuthmpare:(NSNumber *ptherNumber
Compares the receiveratherNumberusing ANSI C rules
for type coersion, and returns an NSComparisonResult.

2-104 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSObject

Inherits From: none(NSObject is the root class)
Conforms To: NSObject
Declared In: Foundation/NSObject.h

Foundation/NSRunLoop.h

Class Description

NSObject is the root class of all ordinary Objective C inheritance hierarchies; it has no superclass. Its interface
derives from two sources: the methods it declares directly and those declared in the NSObject protocol. Its interface
is divided in this way so that objects inheriting from other root classes (notably NSProxy) can stand in for ordinary
objects without having to inherit from NSObject. The following discussion makes no distinction between the
methods declared in this class and those declared in the NSObject protocol.

From NSObject, other classes inherit a basic interface to the run-time system for the Objective C language. It's
through NSObject that instances of all classes obtain their ability to behave as objects. Among other things, the
NSObject class provides inheriting classes with a framework for creating, initializing, deallocating, comparing, and
archiving objects, for performing methods selected at run-time, for querying an object about its methods and its
position in the inheritance hierarchy, and for forwarding messages to other objects. For example, to ask an object
what class it belongs to, you'd send @assmessage. To find out whether it implements a particular method, you'd
send it aespondsToSelectormessage

The NSObiject class is an abstract class; programs use instances of classes that inherit from NSObject, but never of
NSObject itself.

Initializing an Object to Its Class

Every object is connected to the run-time system througgeitastance variable, inherited from the NSObject
classisaidentifies the object’s class; it points to a structure that's compiled from the class definition. Témpugh

an object can find whatever information it needs at run time—such as its place in the inheritance hierarchy, the size
and structure of its instance variables, and the location of the method implementations it can perform in response
to messages.

Because all ordinary objects inherit directly or indirectly from the NSObject class, they all have this variable. The
defining characteristic of an “object” is that its first instance variableisagointer to a class structure.

The installation of the class structure—the initializatiorsaef—is one of the responsibilities of th#oc and
allocWithZone: methods, the same methods that create (allocate memory for) new instances of a class. In other
words, class initialization is part of the process of creating an object; it’s not left to the methods jsiticthas
initialize individual objects with their particular characteristics.

OpenStep Specification—10/19/94 Classes: NSObjec?-105

Instance and Class Methods

Every object requires an interface to the run-time system, whether it’'s an instance object or a class object. For
example, it should be possible to ask either an instance or a class whether it can respond to a particular message.
So that this won't mean implementing every NSObject method twice, once as an instance method and again as a
class method, the run-time system treats methods defined in the root class in a special way:

Instance methods defined in the root class can be performed both by instances
and by class objects.

A class object has access to class methods—those defined in the class and those inherited from the classes above it
in the inheritance hierarchy—but generally not to instance methods. However, the run-time system gives all class
objects access to the instance methods defined in the root class. Any class object can perform any root instance
method, provided it doesn’t have a class method with the same name.

For example, a class object could be sent messages to perform NS@égparslsToSelectorand
perform:withObject: instance methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsToSelector:method])
[MyClass perform:method withObject:self];

When a class object receives a message, the run-time system looks first at the receiver’s set of class methods. If it
fails to find a class method that can respond to the message, it looks at the set of instance methods defined in the
root class. If the root class has an instance method that can respond (as NSObjectekmmfisToSelector:
andperform:withObject:), the run-time system uses that implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root class. If MyClass in the
example above had reimplemented eitlespondsToSelectoror perform:withObject: , those new versions of

the methods would be available only to instances. The class object for MyClass could perform only the versions
defined in the NSObject class. (Of course, if MyClass had implemesgpdndsToSelectoror

perform:withObject: as class methods rather than instance methods, the class would perform those new versions.)

Initializing the Class
+ (void)initialize Initializes the class before it's used (before it receives its

first message).

Creating and Destroying Instances

+ (id)alloc Returns a new, uninitialized instance of the receiving class.
+ (id)allocWithZone:(NSZone *yone Returns a new, uninitialized instance of the receiving class
in zone

2-106 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

+ (id)new

— (id)copy

— (void)dealloc

— (id)init

— (id)mutableCopy

Identifying Classes

+ (Classtlass

+ (Class}uperclass

Testing Class Functionality

Allocates a new instance of the receiving class, sends it an
init message, and returns the initialized object returned
by init. This method is simply a convenient cover for
thealloc andinit methods.

InvokescopyWithZone:. This method is implemented in
NSObject as a convenience to subclasses. A subclass
need override onlgopyWithZone: for bothcopy and
copyWithZone: to operate correctly.

Deallocates the memory occupied by the receiver.

Implemented by subclasses to initialize a new object (the
receiver) immediately after memory for it has been
allocated.

InvokesmutableCopyWithZone:. This method is
implemented in NSObject as a convenience to
subclasses. A subclass need override only
mutableCopyWithZone: for bothmutableCopy and
mutableCopyWithZone: to operate correctly.

Returnsself. Since this is a class method, it returns the class
object.

Returns the class object for the receiver’s superclass.

+ (BOOL)instancesRespondToSelectafSEL)aSelector

Testing Protocol Conformance

Returns YES if instances of the class are capable of
responding t@aSelectomessages, and NO if they’re
not.

+ (BOOL)conformsToProtocol;(Protocol *aProtocol

OpenStep Specification—10/19/94

Returns YES if the receiving class conformsRyotocol|
and NO if it doesn't.

Classes: NSObjec2-107

Obtaining Method Information

+ (IMP)instanceMethodForSelector{(SEL)aSelector
Locates and returns the address of the implementation of
theaSelectoiinstance method.

— (IMP)methodForSelector(SEL)aSelector Locates and returns the address of the receiver’s
implementation of thaSelectomethod, so that it can
be called as a function.

— (NSMethodSignature M)ethodSignatureForSelector{SEL)aSelector
Returns an object that contains a description of the
aSelectomethod, onil if the aSelectomethod can’t
be found.

Describing Objects

+ (NSString *pescription Subclasses override this method to return a
human-readable string representation of the contents of
the receiver. NSObject’s implementation simply prints
the name of the receiver’s class.

Posing

+ (void)poseAsClasqClassaClass Causes the receiving class to “pose as” its superclass.

Error Handling

— (voidYdoesNotRecognizeSelectdiSEL)aSelector
HandlesaSelectomessages that the receiver doesn’t
recognize.

Sending Deferred Messages

+ (void)cancelPreviousPerformRequestsWithTarge(id)aTarget
selector(SEL)aSelector Cancels previous perform requests having the same target
object:(id)anObject and argument (as determinedibltqual:), and the
same selector. This method removes timers only in the
current run loop, not all run loops.

— (void)performSelector:(SEL)aSelector Sends amaSelectormessage tanObjectafterdelay self
object:(id)anObject andanObijectare retained until after the action is
afterDelay:(NSTimelntervaljlelay executed.

2-108 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Forwarding Messages

— (voidYforwardInvocation: (NSInvocation *aninvocation
Implemented by subclasses to forward messages to other
objects.

Archiving

— (id)awakeAfterUsingCoder:(NSCoder *aDecoderimplemented by subclasses to reinitialize the receiver. The
NSObject implementation of this method simply
returnsself.

— (ClassglassForArchiver Identifies the class to be used during archiving. NSObject’s
implementation returns the object returned by
classForCoder:

— (ClassglassForCoder Identifies the class to be used during serialization. An
NSObject returns its own class by default.

— (id)replacementObjectForArchiver:(NSArchiver *JanArchiver
Allows an object to substitute another object for itself
during archiving. NSObject’s implementation returns
the object returned IngplacementObjectForCoder.

— (id)replacementObjectForCoder(NSCoder *anEncoder
Allows an object to substitute another object for itself
during serialization. NSObject’s implementation

returnsself
+ (void)setVersion{(int)version Sets the class version numbewréssion
+ (int)version Returns the version of the class definition.

OpenStep Specification—10/19/94 Classes: NSObjec2-109

NSProcessinfo

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSProcessinfo.h

Class Description

The NSProcesslInfo class provides methods to access process-wide information. An NSProcessInfo object can
return such information as the arguments, environment, host name, or process nameebsifoclass method
returns an NSProcessInfo object. For example, the following code creates an NSProcessInfo object, which then
provides the name of the current process:

[[NSProcessInfo processinfo] processName];

Getting an NSProcessInfo Object

+ (NSProcessinfo frocessinfo Returns the NSProcesslInfo object for the process. It is
already initialized. An NSProcesslInfo object is created
the first time this method is invoked, and that same
object is returned on each subsequent invocation.

Returning Process Information

— (NSArray *jarguments Returns the arguments as an array of NSStrings from the
command line.

— (NSDictionary *environment Returns a dictionary of variables defined for the
environment from which the process was launched.

— (NSString *hostName Returns the name of the host system.

— (NSString *processName Returns the name of the process under which this

program’s user defaults domain is created, and is the
name used in error messages. It does not uniquely
identify the process.

— (NSString *ploballyUniqueString Returns a globally unique string to identify the process.
This method uses the host name, process ID, and a
timestamp to ensure that the string returned will be
globally unique.

2-110 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Specifying a Process Name

— (void)setProcessNamégNSString *newName Sets the name of the processigovNameWarning:
Aspects of the environment like user defaults might
depend on the process name, so be very careful if you
change this. Setting the process name this way is not
thread-safe.

OpenStep Specification—10/19/94 Classes: NSProcessInfa111

NSProxy

Inherits From: none NXProxy is a root clags
Conforms To: NSObject
Declared In: Foundation/NSProxy

Class Description

The NSProxy class declares the programmatic interfagmxies—objects that stand in for real objects (usually
descendants of the NSObject class), where the real objects may exist within the same or another process, perhaps
even in a system of a different architecture across a network. To the application, the proxy behaves like the real
object, though the real object may not be directly accessible, and in general, instance variables of remote objects
are not accessible.

NSProxy class defines few methods, because proxies respond to few messages directly. Instead, when a proxy
receives a message it doesn’t respond to, it encodes the message, including the arguments, in an invocation, and
invokesforwardInvocation: . Specialized subclasses then direct further processing, such as forwarding the
message to a real object in the same or another process.

Methods defined in this class are methods that the NSProxy class responds to directly. Unless otherwise noted, none
of these methods are forwarded to the proxy’s correspondent.

Your application in general doesn'’t instantiate NSProxy objects—they're created as instances of specialized
subclasses. Proxies are reference-counted so that only a single NSProxy per connection is instantiated for any real
object.

Creating and Destroying Instances

+ (id)alloc Returns a new, uninitialized instance of the receiving class.

+ (id)allocWithZone:(NSZone *fone Returns a new, uninitialized instance of the receiving class
in zone

— (void)dealloc Deallocates the memory occupied by the receiver.

Identifying Classes

+ (Classtlass Returnsself. Since this is a class method, it returns the class
object.

2-112 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Obtaining Method Information

— (NSMethodSignature methodSignatureForSelector(SEL)aSelector
Implemented by subclasses to return an object that contains
a description of thaSelectomethod, onil if the
aSelectomethod can’t be found. The NSProxy
implementation of this method raises an
NSInvalidArgumentException exception.

Describing Objects

— (NSString *fescription Prints the name of receiver’s class and the hexadecimal
value of the itsd.

Forwarding Messages

— (void¥orwardInvocation: (NSlnvocation *jnvocation
Implemented by subclasses to forward messages to other
objects. The NSProxy implementation of this method
raises an NSinvalidArgumentException exception.

OpenStep Specification—10/19/94 Classes: NSProxy2-113

NSRecursiveLock

Inherits From: NSObject
Conforms To: NSLocking

NSObject (NSObject)
Declared In: Foundation/NSLock.h

Class Description
NSRecursiveLock is used for locks that need to be reacquired by the same thread.

An NSRecursivelLock locks a critical section of code such that a single thread can reaquire the lock multiple times
without deadlocking, while preventing access by other threads. (Note that this implies that a recursive lock will not
protect a critical section from a signal handler interrupting the thread holding the lock.) Here is an example where
a recursive lock functions properly but other lock types would deadlock:

/I create the lock only once!

NSRecursiveLock *theLock = [NSRecursiveLock new];
I* ...other code... */

[theLock lock];

/* ... possibly a long time of fussing with global data... */

[theLock lock]; /* possibly invoked in a subroutine */
[theLock unlock];

[theLock unlock];

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the NSLocking protocol with
various features and performance characteristics; see the other class descriptions for more information.

Acquiring a Lock

— (BOOL)ryLock Attempts to acquire a lock. Returns YES if successful and
NO otherwise. This method can be called repeatedly to
produce nested locks.

2-114 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSRunLoop

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSRunLoop.h

Class Description

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An NSRunLoop
object processes input for sources such as mouse and keyboard events from the window system, NSTimers, POSIX
file descriptors, and NSConnections, based mdeargument. A given NSRunLoop object processes input for

input sources associated with a particular mode.

In general, your application won't need to either create or explicity manage NSRunLoop objects. Each thread has
an NSRunLoop object automatically created for it. The NSApplication object creates a default thread and therefore
creates a default run loop.

Applications wanting to perform their own explicit run loop management should securteetRunLoop
message to the NSRunLoop class object to obtain the NSRunLoop object for the current thread, then invoke one of
the methods described below in “Running a Run Loop” to obtain input.

Currently defined modes are:

NSDefaultRunLoopMode Use this mode to deal with input sources other than NSConnections. Defined
in theFoundation/NSRunLoop.hheader file.

NSConnectionReplyMode Use this mode to indicate NSConnections waiting for replies. Defined in the
Foundation/NSConnectionh header file.

Accessing the Current Run Loop
+ (NSRunLoop *furrentRunLoop Returns the NSRunLoop for the current thread.
— (NSString *rurrentMode Returns the current run loop mode.

— (NSDate *)imitDateForMode: (NSString *mode Polls timers and platform-specific input managers for their
limit date (if any). Timers will fire if appropriate.
Returnanil if there are no input sources for this mode.

OpenStep Specification—10/19/94 Classes: NSRunLoo®-115

Adding Timers

— (voidjaddTimer: (NSTimer *)aTimer
forMode: (NSString *)mode

Running a Run Loop
— (void)acceptinputForMode:(NSString *)mode
beforeDate{NSDate *}imitDate

— (void)un

— (BOOLYunMode: (NSString *)mode
beforeDate(NSDate *JimitDate

— (voidyunUntilDate: (NSDate *}JimitDate

2-116 Chapter 2: Foundation Kit

Registers the timaTimerwith input filtermode The run
loop causes the timer to fire at its scheduled fire date.
Note that timers are removed from modes if they supply
nil as their fire date.

Runs the run loop, accepting input from the input sources
for the mode specified byiodeuntil the time specified
by limitDate.

Runs the run loop in the default mode until there is nothing
to do.

Runs the run loop, accepting input from filkeode
until limitDate or until the earliest limit date for input
sources in this mode. Returns NO without starting the
run loop if there are no limit dates set for input sources
(that is, there’s nothing to do).

Runs the run loopntil limitDate or until there are no limit
dates set foinput sources (that is, there’s nothing to
do).

OpensStep Specification—10/19/94

NSScanner

Inherits From: NSObject
Conforms To: NSCopying

NSObject (NSObject)
Declared In: Foundation/NSScanner.h

Class Description

The NSScanner class declares the programmatic interface to an object that is capable of scanning NSString objects
(strings of characters in the Unicode character encoding), con verting the scanned strings to various numeric
representations, or scanning characters from a character set.

Generally, you instantiate a scanner object by sending awpbherWithString: or
localizedScannerWithString methods to the NSScanner class object. Either method returns a scanner object
initialized with the string you pass in.

NSScanner provides methods of configuring the behavior of thesst@aseSensitivespecifies whether the

scanner will treat upper case and lower case letters as dis@t€haractersToBeSkippeddetermines the set of
characters that will be skipped while scanning. The preset set of characters to skip are whitespace and newline
characterssetLocale:specifies the locale to be used while scanning strggiScanLocationssets the index in

the string object at that scanning will commence. Using this method, you can repeatedly scan portions of a string.

Scanning is performed using any of #oan.. methods listed under “Scanning a String”.

Note that floating point numbers are assumed to be IEEE compliant.

Creating an NSScanner

+ (id)localizedScannerWithString:(NSString *aString
Creates and returns a scanner that sa8tring Invokes
initWithString: and sets the locale to the user’s default

locale.
+ (id)scannerWithString: (NSString *aString Creates and returns a scanner that saSiring
— (id)initwithString: (NSString *|String Initializes the receiver, a newly allocated scanner, to scan

aString Returnsself.

Getting an NSScanner’s String

— (NSString *¥tring Returns the string object that the scanner was created with.

OpenStep Specification—10/19/94 Classes: NSScanne2-117

Configuring an NSScanner

— (BOOL)caseSensitive Returns YES if the scanner distinguishes case, and NO
otherwise. Scanners are by defadt case sensitive.

— (NSCharacterSet ¢haractersToBeSkipped Returns a character set object containing those characters
that the scanner ignores when looking for an element.
The default set is the whitespace and newline character
set.

— (NSDictionary *jocale Returns a dictionary object containing locale information.
Returnsnil if the locale dictionary has not been set.

— (unsignedjcanLocation Returns the character index at which the scanner will begin
its next scanning operation.

— (void)setCaseSensitivéBOOL)flag If flagis YES, the scanner considers case when scanning
characters. Iflagis NO, it ignores case distinctions.
NSScanners are by defantit case sensitive.

— (voidsetCharactersToBeSkippedNSCharacterSet &Set
Sets the scanner to ignore characters fa@®atwhen
scanning its string.

— (void)setLocale(NSDictionary *)JocaleDictionary Sets the receiver’s dictionary object containing locale
information.

— (void)setScanLocation{unsigned ininindex Sets the location at which the next scan will begin to
anindex

Scanning a String

In thescan..methods listed here, thaluearguments (which are values returned by reference) are optional. Pass
an argument value afil if you do not wish a return value.

— (BOOL)scanCharactersFromSet{NSCharacterSet gSet
intoString: (NSString **)value Scans the string as long as characters aSetare
encountered, accumulating characters into an optional
string that's returned by referencevialue If any
characters are scanned, returns YES; otherwise returns
NO.

— (BOOL)scanDouble(double *Vvalue Scans aouble into valueif possible. Returns YES if a
valid floating-point expression was scanned; NO
otherwise. HUGE_VAL or -HUGE_VAL is put in
valueon overflow; 0.0 on underflow. Returns YES in
overflow and underflow cases

2-118 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (BOOL)scanFloat{float *)value Scans dloat into valueif possible. Returns YES if a valid
floating-point expression was scanned; NO otherwise.
HUGE_VAL or -HUGE_VAL is put invalueon
overflow; 0.0 on underflow. Returns YES in overflow
and underflow cases.

— (BOOL)scanint:(int *)value Scans afint into valueif possible. Returns YES if a valid
integer expression was scanned; NO otherwise.
INT_MAX or INT_MIN is put invalueon overflow.
Returns YES in overflow cases.

— (BOOL)scanLongLong{long long *Vvalue Scans dong long int into valueif possible. Returns YES
if a valid integer expression was scanned; NO
otherwise. LONG_LONG_MAX or
LONG_LONG_MIN is put invalueon overflow.
Returns YES in overflow cases.

— (BOOL)scanString:(NSString *aString Scans foaString and if a match is found returns by
intoString: (NSString **)value reference in the optionahlueargument a string object
equal to it. IfaStringmatches the characters at the scan
location, returns YES; otherwise returns NO.

— (BOOL)scanUpToCharactersFromSet{NSCharacterSet gSet
intoString: (NSString **)value Scans the string until a character fraBetis encountered,
accumulating characters encountered into a string that’s
returned by reference in the optiomalueargument. If
any characters are scanned, returns YES; otherwise
returns NO.

— (BOOL)scanUpToString:(NSString *aString Scans the string untStringis encountered,
intoString: (NSString **)value accumulating characters encountered into a string that’s
returned by reference in the optiomalueargument. If
any characters are scanned, returns YES; otherwise
returns NO.

— (BOOL)sAtENd Returns YES if the scanner has exhausted all characters in
(
its string; NO if there are characters left to scan.

OpenStep Specification—10/19/94 Classes: NSScanne2-119

NSSerializer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSSerialization.h

Class Description

The NSSerializer class provides a mechanism for creating an abstract representation of a property list. (In
OpenStep, property lists are defined to be—and to contain—objects of these classes: NSDictionary, NSArray,
NSString, NSData). The NSSerializer class stores this representation in an NSData object in an
architecture-independent format, so that property lists can be used with distributed applications. NSSerializer's
companion class NSDeserializer declares methods that take the abstract representation and recreate the property
list in memory.

In contrast to archiving (see the NSArchiver class specification), the serialization process preserves only structural
information, not class information. Thus, if a property list is serialized and then deserialized, the objects in the
resulting property list might not be of the same class as the objects in the original property list. However, the
structure and interrelationships of the data in the resulting property list are identical to that in the original, with one
possible exception.

The exception is that when an object graph is serialized, the mutability of the containers objects (NSDictionary and
NSArray objects) is preserved only down to the highest node in the graph that has an immutable container. Thus,
if an NSArray contains an NSMutableDictionary, the serialized version of this object graph would not preserve the
mutability of the dictionary or any of the mutable objects it contained. Since serialization doesn’t preserve class
information or—in some cases—mutability, coding (as implemented by NSCoder and NSArchiver) is the preferred
way to make object graphs persistent.

The NSSerializer class object provides the interface to the serialization process; you don't create instances of
NSSerializer. You might subclass NSSerializer to modify the representation it creates, for example, to encrypt the
data or add authentication information.

Other types of data besides property lists can be serialized using methods declared by the NSData and
NSMutableData classes (sssrializeDataAt:0ofObjCType:context: and
deserializeDataAt:ofObjCType:atCursor:context:), allowing these types to be represented in an
architecture-independent format. Furthermore, the NSObjCTypeSerializationCallBack protocol allows you to
serialize and deserialize objects that aren’t property lists.

2-120 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Serialization of Property Lists

+ (NSData *¥erializePropertyList:(id)aPropertyList
Creates a data object, serializ&gopertyListinto it, and
returns the data obje@PropertyListmust be a kind of
NSData, NSString, NSArray, or NSDictionary.

+ (void)serializePropertyList: (id)aPropertyList Serializes the property lisiPropertyListin the mutable
intoData: (NSMutableData *ndata data objectndata aPropertyListmust be a kind of
NSData, NSString, NSArray, or NSDictionary.

OpenStep Specification—10/19/94 Classes: NSSerialize2-121

NSSet

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class Description

The NSSet class declares the programmatic interface to an object that manages an immutable set of objects. NSSet
provides support for the mathematical concept®#taA set, both in its mathematical sense and in the OpenStep
implementation of NSSet, is amorderedcollection of distinct elements. OpenStep provides the NSMutableSet

class for sets whose contents may be altered, and also provides the NSCountedSet class for sets that can contain
multiple instances of the same element.

Use set objects as an alternative to array objects when the order of elements is not important, but performance in
testing whether an object is contained in théssatconsideration—while arrays are ordered, testing for

membership is slower than with sets. For example, the NSSet nuethiadhsObject: operates in O(1) time when

applied to a set, whileontainsObject: operates in O(N) time when applied to an array.

Objects in a set must respondhsh andisEqual: methods. See the NSObject protocol for detailbashand
isequal:.

Generally, you instantiate an NSSet object by sending one séthemethods to the NSSet class object. These
methods return an NSSet object containing the elements (if any) you pass in as argumeatsadthed is a
“convenience” method to create an empty set. Newly created instances of NSSet created by insskimgthed
can be populated with objects using any ofitlie.. methodsinitWithObijects:: is the designated initializer for
the NSSet class. Objects added to the set are not copied; rather, each object rettaivemassage before it's
added to the set.

NSSet provides methods for querying the elements of thall€bjects returns an array containing all objects in
the setanyObjectreturns some object in the sauntreturns the number of objects currently in therseimber:
returns the object in the set that is equal to a specified object. AdditionallyiettsectsSet:tests for set
intersectionjsEqualToSet: tests for set equality, amsSubsetOfSettests for one set being a subset of the
specified set object.

TheobjectEnumerator method provides for traversing elements of the set one by one.

NSSet'smakeObjectsPerform: andmakeObjectsPerform:withObject: methods provides for sending messages
to individual objects in the set.

2-122 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Exceptions

NSSet implements thencodeWithCoder:method, which raises NSinternallnconsistencyException if the number
of objects enumerated for encoding turns out to be unequal to the number of objects in the set.

Allocating and Initializing a Set

+ (id)allocWithZone:(NSZone *yone Creates and returns an uninitialized set objezbire

+ (id)set Creates and returns an empty set object.

+ (id)setWithArray: (NSArray *)array Creates and returns a set object containing the objects in
array.

+ (id)setWithObject: (id)anObject Creates and returns a set object containing the single
elementanObject.

+ (id)setWithObjects:(id)firstObj,... Creates and returns a set object containing the objects in the
argument list. The object list is comma-separated and
ends withnil .

— (id)initWithArray: (NSArray *)array Initializes a newly allocated set object by placing in it the

objects contained iarray.

— (id)initwithObjects: (id)firstObj,... Initializes a newly allocated set object by placing in it the
objects in the argument list. The object list is
comma-separated and ends with

— (id)initwithObjects: (id *)objects Initializes a newly allocated set object by placing in
count:(unsigned intgount it countobjects from th@bjectsarray.
— (id)initWithSet: (NSSet *anotherSet Initializes a newly allocated set object by placing in it the
objects contained ianotherSet.
— (id)initWithSet: (NSSet *set Initializes a newly allocated set object by placing in it the
copyltems(BOOL)flag objects contained ianotherSefor immutable copies of

them, ifflagis YES).

OpenStep Specification—10/19/94 Classes: NSSe-123

Querying the Set
— (NSArray *rllObjects
— (id)anyObject
— (BOOL)ontainsObject;(id)anObject
— (unsigned infount

— (idymember:(id)anObject

— (NSEnumerator t)bjectEnumerator
Sending Messages to Elements of the Set

— (void)ymakeObjectsPerform(SEL)aSelector

— (void)ymakeObijectsPerform:(SEL)aSelector

withObject: (id)anObject

Comparing Sets

— (BOOL)intersectsSet{NSSet *ptherSet

— (BOOL)sEqualToSet(NSSet *ptherSet

— (BOOL)isSubsetOfSet{NSSet *ptherSet

Creating a String Description of the Set
— (NSString *fescription

Returns an array containing all the objects in the set.
Returns some object in the setndrif the set is empty.
Returns YES ifanObjectis present in the set.

Returns the number of objects currently in the set.

Return the object in the set that is equari®bject or nil
if none is equal.

Returns an enumerator object that lets you access each
object in the set.

Sends amSelectomessage to each object in the set.

Sends amSelectormessage to each object in the
set, withanObjectas an argument.

Returns YES if there’s any object in the receiving set that's
equal to an object iatherSet

Returns YES if every object in the receiving set is equal to
an object irotherSetand the two sets contain the same
number of objects.

Returns YES if every object in the receiving set is equal to
an object irtherSetand the receiving set contains no
more objects thaatherSetdoes.

Returns a string object that describes the contents of the
receiver.

— (NSString *HescriptionWithLocale: (NSDictionary *JocaleDictionary

2-124 Chapter 2: Foundation Kit

Returns a string representation of the NSSet object,
including the keys and values that represent the locale
data fromlocaleDictionary

OpensStep Specification—10/19/94

NSString

Inherits From: NSObject

Conforms To: NSCoding, NSCopying, NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSString.h

Foundation/NSPathUftilities.h
Foundation/NSuUtilities.h

Class Description

NSString declares the programmatic interface for objects that create and manage immutable character strings in a
representation-independefdrmat.

NSString (and NSMutableString) are abstract classes for string manipulation. NSString provides methods for
read-only access, while NSMutableString allows for changing the contents of the string. NSString and
NSMutableString provide factory methods that return autoreleased instances of unspecified subclasses of strings.

While the actual representation of character strings stored in NSString and NSMutableString is independent of any
particular implementation, you can in general think of the contents of NSString and NSMutableString objects as
being, canonicallyJnicodecharacters (defined by thaichar data type). Methods that use the terms “character”,
“range”, and “length”, refer to strings ahichars and ranges and lengthsusfichar strings—this is important,

because conversion betwagmichars and other character encodings is not necessarily one-to-one. For instance,
an ISO Latinl encoded string of a given length might contain fewer or more characters when enatidbdras

Another important point is thamhichars don't necessarily correspond one-to-one with what is normally thought of

as “letters” in a string; if you need to go through a string in terms of "letters”, use
rangeOfComposedCharacterSequenceAtindex:

Methods that take “CString” arguments deal with the default eight-bit encoding of the environment, which could
be, for instance, EUC or ISOLatin1. You can also explicitly convert to and from any encoding by using methods
such asnitWithData:usingEncoding: anddataUsingEncoding:

Constant NSStrings can be created with the @"..." option—such strings should contain only ASCII characters, and
nothing more.

Strings are provided with generic coding behavior when used for storage or distribution. This behavior is to copy
the contents and provide a generic NSString implementation, losing class but preserving mutability.

In general, you instantiate NSString objects sending one strihgWith ... methods or the
localizedStringWithFormat: method to the NSString class object. For NSString objects that were allocated
“manually”, use any of thmitWith ... methods to initialize the contents of the string object.

The primitive methods to NSString dength andcharacterAtindex:.

OpenStep Specification—10/19/94 Classes: NSString2-125

UNIX-style file system path names can be manipulated using the collecstimgBy... methods described
under “Manipulating File System Paths” below.

Creating Temporary Strings

+ (NSString *JocalizedStringWithFormat: (NSString *format,...

Returns a string created by usfogmatas gorintf() style
format string, and the following arguments as values to
be substituted into the format string. The user’s default
locale is used for format information.

+ (NSString *stringWithCString: (const char *pyteString
Returns a string containing the charactefsyite String
which must be null-terminatetlyteStringshould
contain characters in the default C string encoding.

+ (NSString *stringWithCString: (const char *pyteString
length:(unsigned infength Returns a string containing characters fitoyte String
byteStringshould contain characters in the default C
string encodinglengthbytes are copied into the string,
regardless of whether a null byte existbyeString
Raises NSinvalidArgumentExceptiorbifteStringis
NULL

+ (NSString *stringWithCharacters: (const unichar ghars
length:(unsigned infength Returns a string containirgipars lengthcharacters are
copied into the string, regardless of whether a null
character exists iohars

+ (NSString *stringWithContentsOfFile: (NSString *path
Returns a string containing the contents of the file specified
by path This method attempts to determine the
encoding for the file. The string is assumed to be in
Unicode encoding, but if the encoding is determined not
to be Unicode, the default C string encoding is used
instead.

+ (NSString *stringWithFormat: (NSString *format,...
Returns a string created by usfiogmatas aprintf() style
format string, and the following arguments as values to
be substituted into the format string.

2-126 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Initializing Newly Allocated Strings

— (id)init

— (id)initWithCString: (const char *#yteString

— (id)initWithCString: (const char *yteString
length:(unsigned infength

— (id)initWithCStringNoCopy: (char *)oyteString
length:(unsigned inflength
freewhenDone(BOOL)flag

— (id)initWithCharacters: (const unichar *ghars
length:(unsigned infength

— (id)initwithCharactersNoCopy: (unichar *chars
length:(unsigned infength
freeWhenDone(BOOL)flag

— (id)initwithContentsOfFile: (NSString *path

OpenStep Specification—10/19/94

Initializes the receiver, a newly allocated NSString, to
contain no characters. This is the only initialization
method that a subclass of NSString should invoke.

Initializes the receiver, a newly allocated NSString, by
converting the one-byte characterdineStringinto
Unicode characterbyteStringmust be a
null-terminated C string in the default C string
encoding.

Initializes the receiver, a newly allocated NSString, by
convertingengthone-byte characters lryte Stringnto
Unicode characters. This method doesn’t stop at a null
byte.

Initializes the receiver, a newly allocated NSString, by
convertingengthone-byte characters byteStringnto
Unicode characters. This method doesn’t stop at a null
byte. The receiver becomes the ownebbyteString;if
flagis YES it will free the memory when it no longer
needs it, but iflagis NO it won't.

Initializes the receiver, a newly allocated NSString, by
copyinglengthcharacters fronshars This method
doesn't stop at a null character.

Initializes the receiver, a newly allocated NSString, to
containlengthcharacters fronshars This method
doesn’t stop at a null character. The receiver becomes
the owner othars;if flagis YES the receiver will free
the memory when it no longer needs them, bil&gfis
NO it won't. Note that the NO case could be dangerous
if used with memory that could be freed. The NO flag
should be used only when the provided backing store is
permanent.

Initializes the receiver, a newly allocated NSString, by
reading characters from the file whose name is given by
path This method attempts to determine the encoding
for the file. The string is assumed to be in Unicode
encoding, but if the encoding is determined not to be
Unicode, the default C string encoding is used instead.
Also seewriteToFile:atomically: in “Storing the
String”.

Classes: NSString2-127

— (id)initwithData: (NSData *Hata
encoding(NSStringEncodingncoding

— (id)initwithFormat: (NSString *format,...

— (id)initWithFormat: (NSString *format
arguments;(va_listiargList

— (id)initWithFormat: (NSString *format
locale:(NSDictionary *dictionary;...

— (id)initwithFormat: (NSString *format
locale:(NSDictionary *dictionary
arguments:(va_listiargList

— (id)initWithString: (NSString *}ktring

Getting a String’s Length

— (unsigned intength

Accessing Characters

— (unichartharacterAtindex: (unsigned inindex

— (void)getCharacters{unichar *puffer

— (void)getCharacters{unichar *puffer
range:(NSRangeaRange

2-128 Chapter 2: Foundation Kit

Initializes the receiver, a newly allocated NSString, by
converting the bytes idatainto Unicode characters.
datamust be an NSData object containing bytes in
encodingand in the default “plain text” format for that
encoding.

Initializes the receiver, a newly allocated NSString, by
constructing a string frodformatand following string
objects in the manner ofintf() .

Initializes the receiver, a newly allocated NSString, by
constructing a string froformatandargListin the
manner ofvprintf() .

Initializes the receiver, a newly allocated NSString, by
constructing a string frofoermatand the formatting
information in the dictionary in the mannermfntf() .

Initializes the receiver, a newly allocated NSString, by
constructing a string froformatand format
information indictionary andargListin the manner of
vprintf() .

Initializes the receiver, a newly allocated NSString, by
copying the characters frostring.

Returns the number of characters in the receiver. This

number includes the individual characters of composed

character sequences.

Returns the character at the array position giveimdbgx
This method raises awSStringBoundsError
exception ifindexlies beyond the end of the string.

InvokesgetCharacters:range:with the provideduffer
and the entire extent of the receiver as the range.

Copies characters fromRangein the receiver intbuffer,
which must be large enough to contain them. This
method doesotadd a null character. This method
raises afNSStringBoundsError exception if any part
of aRangsdies beyond the end of the string.

OpensStep Specification—10/19/94

Combining Strings

— (NSString *ptringByAppendingFormat: (NSString *format,...
Returns a string made by usifigmatas gprintf() style
format string, and the following arguments as values to
be substituted into the format string.

— (NSString *stringByAppendingString: (NSString *)aString
Returns a string made by appenda®fringand the
receiver.

Dividing Strings into Substrings

— (NSArray *componentsSeparatedByStringNSString *separator
Finds the substrings in the receiver that are delimited by
separatorand returns them as the elements of an
NSArray. The strings in the array appear in the order
they did in the receiver.

— (NSString *substringFromindex: (unsigned inthdex
Returns a string object containing the characters of the
receiver starting from the oneiatiexto the end. This
method raises aNSStringBoundsError exception if
indexlies beyond the end of the string.

— (NSString *substringFromRange(NSRangeaRange
Returns a string object containing the characters of the
receiver which lie withimRangeThis method raises an
NSStringBoundsError exception if any part of
aRangdies beyond the end of the string.

— (NSString *substringTolndex:(unsigned inthdex
Returns a string object containing the characters of the
receiver up to, but not including, the onératex This
method raises aNSStringBoundsError exception if
indexlies beyond the end of the string.

Finding Ranges of Characters and Substrings

— (NSRangepngeOfCharacterFromSet(NSCharacterSet &Set
InvokesrangeOfCharacterFromSet:options: with no

options.
— (NSRangepngeOfCharacterFromSet(NSCharacterSet Set
options:(unsigned inthask InvokesrangeOfCharacterFromSet:options:range:
with maskand the entire extent of the receiver as the
range.

OpenStep Specification—10/19/94 Classes: NSString2-129

— (NSRangepngeOfCharacterFromSet(NSCharacterSet &Set
options:(unsigned inthask Returns the range of the first character found fa&at
range:(NSRangedRange The search is restricted aRangewith maskoptions.
maskcan be any combination (using the C bitwise OR
operator |) of NSCaselnsensitiveSearch,
NSLiteralSearch, and NSBackwardsSearch.

— (NSRangepngeOfString: (NSString *pstring InvokesrangeOfString:options: with no options.

— (NSRangepngeOfString: (NSString *string InvokesrangeOfString:options:range: with mask
options:(unsigned inthask options and the entire extent of the receiver as the range.

— (NSRangepangeOfString: (NSString *)aString Returns the range giving the location and length in the
options:(unsigned inthask receiver ofaString The search is restricteda®ange
range:(NSRangedRange with maskoptions maskcan be any combination (using

the C bitwise OR operator |) of
NSCaselnsensitiveSearch, NSLiteralSearch,
NSBackwardsSearch, and NSAnchoredSearch.

Determining Composed Character Sequences

— (NSRangepngeOfComposedCharacterSequenceAtindexunsigned inanindex
Returns an NSRange giving the location and length in the
receiver of the composed character sequence located at
anindex This method raises &5 StringBoundsError
exception ifanindexlies beyond the end of the string.

Identifying and Comparing Strings

— (NSComparisonResutdselnsensitiveCompargNSString *aString
Invokescompare:options: with the option
NSCaselnsensitiveSearch.

— (NSComparisonResut®mpare (NSString *)aString
Invokescompare:options: with no options.

— (NSComparisonResuthmpare:(NSString *aString
options:(unsigned inthask Invokescompare:options:range:with maskas the options
and the receiver’s full extent as the range.

— (NSComparisonResuttympare:(NSString *aString
options:(unsigned inthask CompareaStringto the receiver and returns their lexical
range:(NSRangejRange ordering. The comparison is restrictechf®angeand
usesmaskoptions, which may be
NSCaselnsensitiveSearch and NSLiteralSearch.

— (BOOL)hasPrefix(NSString *aString Returns YES ifStringmatches the beginning characters
of the receiver, NO otherwise.

2-130 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (BOOL)hasSuffix(NSString *)aString Returns YES ifaStringmatches the ending characters of
the receiver, NO otherwise.

— (unsigned int)ash Returns an unsigned integer that can be used as a table
address in a hash table structure. If two string objects
are equal (as determined by thEqual: method), they
must have the same hash value

— (BOOL)sEqual:(id)anObject Returns YES if both the receiver aadObjecthave the
sameid or if they’re both NSStrings that compare as
NSOrderedSame NO otherwise.

— (BOOL)sEqualToString: (NSString *aString Returns YES i&Stringis equivalent to the receiver (if they
have the samiel or if they compare as
NSOrderedSamg, NO otherwise.

Storing the String

— (NSString *ylescription Returns the string itself.
— (BOOL)writeToFile: (NSString *¥ilename Writes a textual description of the receivefitename.
atomically: (BOOL)useAuxiliaryFile If useAuxiliaryFileis YES, the data is written to a

backup file and then, assuming no errors occur, the
backup file is renamed to the intended file name. The
string is written in the default C string encoding if the
contents can be converted to that encoding. If not, the
string is stored in the Unicode encoding.

Getting a Shared Prefix

— (NSString *rommonPrefixWithString: (NSString *aString
options:(unsigned inthask Returns the substring of the receiver containing characters
that the receiver araStringhave in commormaskcan
be any combination (using the C bitwise OR operator |)
of NSCaselnsensitiveSearch and NSLiteralSearch.

Changing Case

— (NSString *rapitalizedString Returns a string with the first character of each word
changed to its corresponding uppercase value.

— (NSString *JowercaseString Returns a string with each character changed to its
corresponding lowercase value.

— (NSString *uppercaseString Returns a string with each character changed to its
corresponding uppercase value.

OpenStep Specification—10/19/94 Classes: NSString2-131

Getting C Strings

— (const char 9String

— (unsigned inhStringLength

— (void)getCString:(char *puffer

— (void)getCString:(char *)uffer
maxLength:(unsigned inthaxLength

— (void)getCsString:(char *Yuffer
maxLength:(unsigned inthaxLength
range:(NSRangeaRange
remainingRange(NSRange *eftoverRange

Getting Numeric V alues

— (doublejloubleValue

2-132 Chapter 2: Foundation Kit

Returns a representation of the receiver as a C string in the
default C string encoding.

Returns the length in bytes of the C string representation of
the receiver.

Invokes
getCString:maxLength:range:remainingRange:
with NSMaximumStringLength as the maximum
length, the receiver’s entire extent as the range, and
NULL for the remaining rangéauffermust be large
enough to contain the resulting C string plus a
terminating null character (which this method adds).

Invokes
getCString:maxLength:range:remainingRange:
with maxLengtras the maximum length, the receiver’s
entire extent as the range, and NULL for the remaining
range buffermust be large enough to contain the
resulting C string plus a terminating null character
(which this method adds).

Copies the receiver’s characters (in the default C string
encoding) as bytes intmffer buffermust be
large enough to contamaxLengthoytes plus a
terminating null character (which this method adds).
Characters are copied fraRangeif not all characters
can be copied, the range of those not copied is put into
leftoverRangeThis method raises an
NSStringBoundsError exception if any part of
aRangdies beyond the end of the string.

Returns the double precision floating point value of the

receiver’s text. Whitespace at the beginning of the string
is skipped. If the receiver begins with a valid text
representation of a floating-point number, that number’s
value is returned, otherwise 0.0 is returned.
HUGE_VAL or —-HUGE_VAL is returned on overflow.
0.0 is returned on underflow. Characters following the
number are ignored.

OpensStep Specification—10/19/94

— (float¥loatValue Returns the floating-point value of the receiver’s text.
Whitespace at the beginning of the string is skipped. If
the receiver begins with a valid text representation of a
floating-point number, that number’s value is returned,
otherwise 0.0 is returned. HUGE_VAL or
—HUGE_VAL is returned on overflow. 0.0 is returned
on underflow. Characters following the number are
ignored.

— (int)intValue Returns the integer value of the receiver’s text. Whitespace
at the beginning of the string is skipped. If the receiver
begins with a valid representation of an integer, that
number’s value is returned, otherwise 0 is returned.
INT_MAX or INT_MIN is returned on overflow.
Characters following the number are ignored.

Working With Encodings

+ (NSStringEncoding "gvailableStringEncodings Returns a null terminated array of available string
encodings..

+ (NSStringEncodingjefaultCStringEncoding Returns the C string encoding assumed for any method
accepting a C string as an argument.

+(NSString *JocalizedNameOfStringEncoding(NSStringEncodingdncoding

Returns the localized name of the string encoding specified
by encoding

— (BOOL)anBeConvertedToEncoding{NSStringEncodingdncoding

Returns YES if the receiver can be convertednooding
without loss of information, and NO otherwise.

— (NSData *YataUsingEncoding(NSStringEncodingncoding
InvokesdataUsingEncoding:allowLossyConversion:
with NO as the argument to allow lossy conversion.

— (NSData *flataUsingEncoding(NSStringEncodingncoding
allowLossyConversion(BOOL)flag Returns an NSData object containing a representation of

the receiver irencoding If flagis NO and the receiver
can't be converted without losing some information
(such as accents or case) this method rehirnl flag

is YES and the receiver can’t be converted without
losing some information, some characters may be
removed or altered in conversion.

OpenStep Specification—10/19/94 Classes: NSString2-133

— (NSStringEncodindastestEncoding Encoding in which this string can be expressed (with
lossless conversion) most quickly.

— (NSStringEncodingmallestEncoding Encoding in which this string can be expressed (with
lossless conversion) in the most space efficient manner

Converting String Contents into a Property List

— (id)propertyList Depending on the format of the receiver’s contents, returns
a string, data, array, or dictionary object represention of
those contents.

— (NSDictionary *propertyListFromStringsFileFormat
Returns a dictionary object initialized with the keys and

values found in the receiver. The receiver’s format must
be that used for “.string” files.

Manipulating File System Paths
— (unsigned inompletePathintoString:(NSString **)outputName

caseSensitivdBOOL)flag Regards the receiver as containing a partial flename and
matchesintoArray: (NSArray **)outputArray returns inoutputNamehe longest matching path name.
filterTypes:(NSArray *YfilterTypes Case is consideredfiagis YES. IfoutputArrayis

given, all matching filenames are returmiiputArray

If filterTypesis provided, this method considers only
those paths that match one of the types. Returns 0 if no
matches are found; otherwise, the return value is
positive.

— (NSString *JastPathComponent Returns the last component of the receiver’s path
representation. Given the path “/Images/Bloggs.tiff”,
this method returns a string containing “Bloggs.tiff".

— (NSString *pathExtension Returns the extension of the receiver’s path representation.
Given the path “/Images/Bloggs.tiff”, this method
returns a string containing “tiff".

— (NSString *stringByAbbreviatingWithTildelnPath
Returns a string in which the user’s home directory path is

replace by “~".

— (NSString *ptringByAppendingPathComponent{NSString *|String
Returns a string representing the receiver’s path with the
addition of the path componea®tring

— (NSString *stringByAppendingPathExtension{NSString *aString

Returns a string representing the receiver’s path with the
addition of the extensioaString

2-134 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (NSString *»tringByDeletingLastPathComponent

— (NSString *ptringByDeletingPathExtension

— (NSString *stringByExpandingTildelnPath

— (NSString *»tringByResolvingSymlinksinPath

— (NSString *}tringByStandardizingPath

OpenStep Specification—10/19/94

Returns the receiver’s path representation minus the last
component. Given the path “/Images/Bloggs.tiff”, this
method returns a string containing “/Images”.

Returns the receiver’s path representation minus the
extension on the last component. Given the path
“/Images/Bloggs.tiff”, this method returns a string
containing “/Images/Bloggs”.

Returns a string in which a tilde is expanded to its full path
equivalent.

Returns a string identical to the receiver’s path except that
any symbolic links have been resolved.

Returns a string containing a “standardized” path, one in
which tildes are expanded and redundant elements (for
example “/[") eliminated.

Classes: NSString2-135

NSThread

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSThread.h

Class Description

An NSThread object controls a thread of execution. You use an NSThread when you want to terminate or delay a
thread or you want a new thread.

A threadis an executable unit. ¥askis made up of one or more threads. Each thread has its own execution stack
and is capable of independent I/O. All threads share the virtual memory address space and communication rights
of their task. When a thread is started, detachedrom its initiating thread. The new thread runs independently.

That is, the initiating thread does not know the new thread’s state.

To obtain an NSThread object that represents your current thread of executioncusetti€hread method. To

obtain an NSThread object that will create a new thread of execution, use
detachNewThreadSelector:toTarget:withObject: This method sends the specified Objective C message to the
specified object in its own thread of execution. You use the NSThread object returned by these methods if you ever
need to delay or terminate that thread of execution.

When you useletachNewThreadSelector:toTarget:withObject; your application becomes multithreaded. At
any time, you can sernsMultiThreaded to find out if the application is multithreaded, that is, if a thread was ever
detached from the current thre&MultiThreaded returns YES even if the detached thread has completed
execution.

Creating an NSThread

+ (NSThread *purrentThread Returns an object representing the current thread of
execution.

+ (void)detachNewThreadSelector(SEL)aSelector Creates and starts a new NSThread for the message
toTarget:(id)aTarget [aTarget aSelector:anArgument] The method
withObject: (id)anArgument aSelectonay take only one argument and may not

have a return value. If this is the first thread detached
from the current thread, this method posts the
notification NSBecomingMultiThreaded will the nil
object to the default notification center.

2-136 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Querying a Thread
+ (BOOL)isMultiThreaded

— (NSMutableDictionary *hreadDictionary

Delaying a Thread
+ (void)sleepUntilDate(NSDate *pate

Terminating a Thread

+ (void)exit

OpenStep Specification—10/19/94

Returns YES if a thread was ever detached (regardless of if
the detached thread is still running).

Returns the NSThread’s dictionary, allowing you to add
data specific to the receiving NSThread. This
essentially allows user-defined NSThread variables.

Has the receiving NSThread sleep until the time specified
by date No input or timers will be processed in this
interval.

Terminates the thread represented by the calling object.
Before exiting that thread, this method posts the
NSThreadExiting notification with the thread being
exited to the default notification center.

Classes: NSThread?2-137

NSTimer

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSTimer.h

Class Description

NSTimer creates timer objects. A timer object waits until a certain time interval has elapsed and then fires, sending
a specified message to a specified object. For example, you could create an NSTimer that sends a message to a
window, telling it to update itself, after a certain time interval.

NSTimer objects work in conjunction with NSRunLoop objects. NSRunLoops control loops that wait for input,
and they use NSTimers to help determine the maximum amount of time they should wait. When the NSTimer’s
time limit has elapsed, the NSRunLoop fires the NSTimer (causing its message to be sent), then checks for new
input.

There are several ways to create an NSTimer objectsdiredluledTimerWithTimelnterval... class methods
automatically register the new NSTimer with the current NSRunLoop object in default mode. The
timerWithTimelnterval ... class methods create NSTimers that the user may register at a later time by sending the
messagaddTimer:forMode: to the NSRunLoop. If you specify that the NSTimer should repeat, it will
automatically reschedule itself after it fires. If a delay occurs when a timer is scheduled to fire, the timer will not
fire. For example, suppose you used the following statement to create a timer:

timer = [NSTimer scheduledTimerWithTimelnterval:0.5 invocation:aninvocation repeats:YES];

This statement creates a timer will schedule itself to fire after 0.5 seconds, 1 second, 1.5 seconds, and so on from
the time this statement is executed. Suppose there was a 2 second delay because NSRunLoop was busy processing
input. The timer takes this delay into consideration and will skip intervals that were already missed when computing
the next scheduled fire date.

There is no method that removes the association of an NSTimer from an NSRunLoop—send the NSTimer the
invalidate message insteathvalidate disables the NSTimer, so it will no longer affect the NSRunLoop.

See the NSRunLoop class description for more information on NSRunLoops.

As a consequence of being a subclass of NSObject, NSTimer conforms to the NSCoding protocol. In practice,
however, NSTimers are not encoded nor archived.

2-138 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Creating a Timer Object

+ (NSTimer *scheduledTimerWithTimelnterval: (NSTimelnterval}econds
invocation:(NSInvocation *aninvocation Returns a new NSTimer object and registers it with the
repeats(BOOL)repeats current NSRunLoop in the default mode. Aeconds
seconds have elapsed, the NSTimer fires, sending
anlnvocatiors message to its target.répeatsis YES,
the NSTimer will repeatedly reschedule itself.

+ (NSTimer *scheduledTimerWithTimelnterval: (NSTimelntervalyeconds

target: (id)anObject Returns a new NSTimer object and registers it with the
selector(SEL)aSelector current NSRunLoop in the default mode. Aeconds
userInfo: (id)anArgument seconds have elapsed, the NSTimer fires, sending the
repeats(BOOL)repeats messag§anObject aSelector:self] If anObjectneeds

more information, it can send the NSTimerserData
message to retrievaArgumentlf repeatsis YES, the
NSTimer will repeatedly reschedule itself.

+ (NSTimer *YimerWithTimelnterval: (NSTimelnterval¥econds
invocation:(NSInvocation *aninvocation Returns a new NSTimer that, if registered, will fire after
repeats(BOOL)repeats secondseconds. Upon firing, the NSTimer sends
anlnvocatiors message to its target.réfpeatsis YES,
the NSTimer will repeatedly reschedule itself.

+ (NSTimer *timerWithTimelnterval: (NSTimelnterval3econds

target:(id)anObject Returns a new NSTimer that, if registered, will fire after
selector(SEL)aSelector secondseconds. Upon firing, the NSTimer sends the
userinfo:(id)anArgument messagganObject aSelector:self] If anObjectneeds
repeats(BOOL)repeats more information, it can send the NSTimersarData

message to retrievaArgumentlf repeatsis YES, the
NSTimer will repeatedly reschedule itself.

Firing the Timer

— (void)ire Causes the NSTimer’'s message to be dispatched to its
target.
Stopping the Timer
— (void)nvalidate Stops the NSTimer from ever firing again.

Getting Information About the NST imer
— (NSDate *jireDate Returns the date that the NSTimer will next fire.

—userinfo Additional data that the object receiving NSTimer's
message can use.

OpenStep Specification—10/19/94 Classes: NSTimer2-139

NSTimeZone

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSTimeZone is an abstract class that defines the behavior of time-zone objects. By itself, NSDate represents dates
asuniversal timeUniversal time treats a date and time value as identical in, for instance, Redwood City and New
York City. NSDate has no provision for locale adjustment of time-zone information. Provision for locale is critical

for string descriptions and other expressions of conventional dates and times. NSTimeZone is used to affect the
apparent value of date objects so that they reflect time zone related locale information.

NSTimeZoneDetail, a public subclass of NSTimeZone, augments the behavior of NSTimeZone by providing the
commonly known attributes of a time zone in effect for a date within a time zone geopolitical area. These attributes
are abbreviation, the offset from GMT (universal time), and an indication of whether Daylight Savings Time is in
effect.

Time-zone objects represent geopolitical regions and use names to denote the various regions. For example,
“US/Pacific” identifies the geopolitical time zone for San Francisco and Los Angeles, which falls in the same
general latitude as that for the time zone “Canada/Pacific.” The US/Pacific time-zone has specific
NSTimeZoneDetail instances that specify PST (Pacific Standard Time) and PDT (Pacific Daylight Time), which
have slightly different offsets from GMT.

You typically associate the objects returned by NSTimeZone (and, by extension, NSTimeZoneDetail) with date
objects to affect their behavior. Time-zone objects can be of various types:

» time zones with hour and minute offsets from Greenwich Mean Time (GMT)
» time zones with a single abbreviation and offset
« time zones that vary according to Standard Time and Daylight Savings Time

The system should supply the various choices for time zones along with time-zone information. These choices
should be restricted to subsets based on latitude. You can access these choices thimegiotiesArray class
method. Another restriction is the choice of time zone available when there is an ambiguous abbreviation; these
choices are available through the class metiileviationDictionary. Despite these restrictions, you can obtain

an NSTimeZone object from an arbitrary file through the class méthedoneWithName.

Note: By itself, the NSTimeZone class omigmesa time zone. It does not associate an abbreviation or a temporal
offset with a time zone; that is done by NSTimeZoneDetail. An instance of NSTimeZone, however, “knows” about
the set of time-zone detail objects related to it.

2-140 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSTimeZone provides several class methods to get time-zone objects, with or without detail:
timeZoneWithName:, timeZoneWithAbbreviation: , andtimeZoneForSecondsFromGMT: The class also

permits you to set the default time zone used by your application for your IsetidefaultTimeZone) You can

access this default time zone at any time bydgfaultTimeZone method, and, with thiecalTimeZone class

method, you can also get a relative time-zone object that will decode itself to become the default time zone for any
locale in which it finds itself.

NSCalendarDate methods return date objects that are automatically bound with time-zone detail objects. These
date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you specify
otherwise, objects returned from NSCalendarDate are bound to the default time zone for the current locale. A useful
instance method meZoneDetailForDate:, which returns a time-zone detail object associated with a specific

date.

Creating and Initializing an NSTimeZone
+ (NSTimeZoneDetail YefaultTimeZone Returns the default time zone as set for the current locale.

+ (NSTimeZone *pcalTimeZone Returns an NSTimeZone that behaves as the current default
time zone in any given locale.

+ (NSTimeZone ®imeZoneForSecondsFromGMT{(int)seconds
Returns an NSTimeZone representing the time zone with
secondoffset from Greenwich Mean TimH.there is
no object matching the offset, this method creates
and returns a neWSTimeZonebearing the value
secondss a name.

+ (NSTimeZoneDetail fmeZoneWithAbbreviation: (NSString *abbreviation
Returns the time-zone object identified by the abbreviation
abbreviation If there’s no match, this method returns
nil.

+ (NSTimeZone #imeZoneWithName:(NSString *aTimeZoneName
Returns the time-zone object with the name that
corresponds to the geopolitical region
aTimeZoneNamét searches the regions dictionary for
matching names. If there is no match on the name, this
method returnsil .

— (NSTimeZoneDetail Y)meZoneDetailForDate:(NSDate *Hate
Returns the correct time-zone detail object associated with
a date object. You invoke this method when a region’s
time zone (that is, its offset value from GMT) varies
over the year, as happens between Standard Time and
Daylight Savings Time.

OpenStep Specification—10/19/94 Classes: NSTimeZong-141

Managing Time Zones

+ (void)setDefaultTimeZone(NSTimeZone *aTimeZone
SetsaTimeZones the time zone appropriate for the current
locale. This new time zone replaces the previous default
time zone.

Getting Time Zone Information

+ (NSDictionary *pabbreviationDictionary Returns a dictionary that maps abbreviations to region
names, for example “PST” is the key for “US/Pacific”.
If you know a region name for a key, you can obtain a
valid abbreviation from the dictionary and use it to
obtain a detail time-zone object using

timeZoneWithAbbreviation: .
— (NSString *jJimeZoneName Returns thegjeopoliticalname of the time zone.
Getting Arrays of Time Zones
+ (NSArray *timeZoneArray Returns an array of string object arrays, each containing

strings that show current geopolitical names for each
time zone. The subarrays are grouped by latitudinal
region.

— (NSArray *timeZoneDetailArray Returns an array of NSTimeZoneDetail objects that are
associated with the receiving NSTimeZone object.

2-142 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSTimeZoneDetall

Inherits From: NSTimeZone : NSObject

Conforms To: NSCoding, NSCopying (NSTimeZone)
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSTimeZoneDetail is an abstract class that refines the behavior provided by NSTimeZone. NSTimeZone identifies
a geopolitical area with a name (such as US/Pacific). NSTimeZoneDetail augments this region name with more
specific information appropriate for a particular date within its geopolitical region: an abbreviation, an offset (in
seconds) from Greenwich Mean Time (GMT), and an indication of whether Daylight Savings Time is in effect. The
specificity afforded through NSTimeZoneDetail helps to resolve conflicts between abbreviations and offsets that
can arise within regions.

Even though it is a concrete subclass of NSTimeZone, NSTimeZoneDetailalbase “factory” class methods
that create and return time-zone objects. See the specification of NSTimeZone for methods that provide this ability.

However, NSTimeZoneDetail does have methods that allow you to get the abbreviation and temporal offset of a
time-zone object, as well as determine whether Daylight Savings Time is in effect.

Querying an NSTimeZoneDetail

— (BOOL)isDaylightSavingTimeZone Returns YES if the time-zone detail object is used in the
representation of dates during Daylight Savings Time
and returns NO otherwise.

— (NSString *JimeZoneAbbreviation Returns the abbreviation of the time-zone detail object,
such as EDT (Eastern Daylight Time).

— (inttimeZoneSecondsFromGMT Returns the difference in seconds between the receiving
time-zone detail object and Greenwich Mean Time. The
offset can be a positive or negative value.

OpenStep Specification—10/19/94 Classes: NSTimeZoneDetd2143

NSUnarchiver

Inherits From: NSCoder : NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSArchiver.h

Class Description

NSUnarchiver, a concrete subclass of NSCoder, defines objects that can decode a data structure, such as a graph of
Objective C objects, from an archive. Such archives are produced by objects of the NSArchiver class. See the
NSArchiver specification for an introduction to archiving.

General Exception Conditions

While unarchiving, NSUnarchiver performs a variety of consistency checks on the incoming data stream.
NSUnarchiver raises an NSInconsistentArchiveException for a variety of reasons. Possible data errors leading to
this exception are: unknown type descriptors in the data file; an array type descriptor is incorrectly terminated
(missing]); excess characters in a type descriptor; a null class found where a concrete class was expected; class not
loaded.

Initializing an NSUnarchiver

— (id)initForReadingWithData: (NSData *pata Initializes an NSUnarchiver object from data obgata
Raised\SInvalidArgumentException if the data
argument isil.

Decoding Objects
+ (id)unarchiveObjectWithData: (NSData *fata = Decodes an archived object storedidta
+ (id)unarchiveObjectWithFile: (NSString *path Decodes an archived object stored in thepiEth

— (void)decodeArrayOfObjCType:(const char *femType
count:(unsigned inggount Decodes aarray of countdata elements of the same
at:(void *)array Objective C datéiemType t is your responsibility to
release any objects derived in this way.

Managing an NSUnarchiver

— (BOOL)sAtENd Returns YES if the end of data is reached, NO if more data
(
follows.

2-144 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (NSZone *pbjectZone Returns the allocation zone for the unarchiver object.

— (void)setObjectZone(NSZone *gone Sets the allocation zone for the unarchiver objerbtee If
zoneis nil, it sets it to the default zone.

— (unsigned ingystemVersion Returns the system version number for the unarchived data.

Substituting One Class for Another

+ (NSString *rlassNameDecodedForArchiveClassNam@ SString *hamelnArchive
Returns the class name used to archive instances of the
class famelnArchive This may not be the original
class name but another name encoded with
NSArchiver'sencodeClassName:intoClassName

+ (void)decodeClassNaméNSString *namelnArchive
asClassNamgNSString *frueName Decodes from the archived data a class name
(namelnArchivisubstituted for the real class name
(trueNamé. This method enables easy conversion of
unarchived data when there are name changes in
classes.

— (NSString *rlassNameDecodedForArchiveClassNam@ SString *nhamelnArchive
Returns the class name used to archive instances of the
class famelnArchive This may not be the original
class name but another name encoded with
NSArchiver'sencodeClassName:intoClassName

— (void)decodeClassNamégNSString *namelnArchive
asClassNamgNSString *frueName Decodes from the archived data a class name
(namelnArchivgsubstituted for the real class name
(trueNamé. This method enables easy conversion of
unarchived data when there are name changes in
classes.

OpenStep Specification—10/19/94 Classes: NSUnarchiveR-145

NSUserDefaults

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSUserDefaults.h

Class Description
The NSUserDefaults class allows an application to query and manipulate a user’s defaults settings.

Defaults are grouped in domains. For example, there’s a domain for application-specific defaults and another for
global defaults. Each domain has a name and stores defaults as key-value pairs in an NSDictionary object. A default
is identified by a string key, and its value can be any property-list object (NSData, NSString, NSArray, or
NSDictionary). The standard domains are:

Domain Identifier

Argument NSArgumentDomain

Application Identified by the application’s name
Global NSGlobalDomain

Languages Identified by the language names
Registration NSRegistrationDomain

The identifiers starting with “NS” above are global constants.

The argument domain is composed of defaults parsed from the application’s arguments. The application domain
contains the defaults set by the application. It's identified by the name of the application, as returned by this
message:

NSString *applicationName = [[NSProcessInfo processinfo] processName];

The global domain contains defaults that are meant to be seen by all applications. The registration domain is a set
of temporary defaults whose values can be set by the application to ensure that searches for default values will
always be successful. Applications can create additional domains as needed.

A search for the value of a given default proceeds through the domains listed in an NSUserDefauls ednjeltt’s

list. Only domains in the search list are searched. The standard search list contains the domains from the table
above, in the order listed. A search ends when the default is found. Thus, if multiple domains contain the same
default, only the domain nearest the beginning of the search list provides the default’s value. Usiaigtihdést
method, you can reorder the default search list or set up one that is a subset of all the user’s domains.

Typically, you use this class by invoking ttandardUserDefaultsclass method to get an NSUserDefaults object.
This method returns a global NSUserDefaults object with a search list already initialized. Then use the
setObject:forKey: andobjectForKey: methods to set and access user defaults.

2-146 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

The rest of the methods allow more complex defaults management. You can create your own domains, modify any
domain, set up a custom search list, and even control the synchronization of the in-memory and on-disk defaults
representations. Theynchronizemethod saves any modifications to the persistent domains and updates all
persistent domains that were not modified to what is on slyggikchronizeis automatically invoked at periodic

intervals.

You can create either persistent or volatile domains. Persistent domains are permanent and last past the life of the
NSUserDefaults object. Any changes to the persistent domains are committed to disk. Volatile domains last only
last as long as the NSUserDefaults object exists. The NSGlobalDomain domain is persistent; the
NSArgumentDomain is volatile.

Warnings:
» User defaults are not thread safe.
» Automatic saving of changes to disk (throwymchroniz§ depends on a run-loop being present.

* You should synchronize any domain you have altered before exiting a process.

Getting the Shared Instance

+ (NSUserDefaults gtandardUserDefaults Returns the shared defaults object. If it doesn’t exist yet, it's
created with a search list containing the names of the
following domains, in order: the NSArgumentDomain
(consisting of defaults parsed from the application’s
arguments), a domain with the process’ name, separate
domains for each of the user’s preferred languages, the
NSGlobalDomain (consisting of defaults meant to be
seen by all applications), and the
NSRegistrationDomain (a set of temporary defaults
whose values can be set by the application to ensure that
searches will always be successful). The defaults are
initialized for the current user. Subsequent
modifications to the standard search list remain in effect
even when this method is invoked again—the search list
is guaranteed to be standard only the first time this
method is invoked. The shared instance is provided as a
convenience; other instances may also be created.

Getting and Setting a Default

— (NSArray *jarrayForKey: (NSString *defaultName
InvokesobjectForKey: with keydefaultNameReturns the
corresponding value if it's an NSArray object
(according to thésKindOfClass: test) andil
otherwise.

OpenStep Specification—10/19/94 Classes: NSUserDefault3-147

— (BOOL)YoolForKey: (NSString *defaultName InvokesstringForKey: with keydefaultNameReturns
YES if the corresponding value is an NSString
containing uppercase or lowercase “YES” or responds
to theintValue message by returning a non-zero value.
Otherwise, returns NO.

— (NSData *YataForKey: (NSString *defaultName InvokesobjectForKey: with keydefaultNameReturns the
corresponding value if it's an NSData object (according
to theisKindOfClass: test) andhil otherwise.

— (NSDictionary *lictionaryForKey: (NSString *defaultName
InvokesobjectForKey: with keydefaultNameReturns the
corresponding value if it's an NSDictionary object
(according to thésKindOfClass: test) andil
otherwise.

— (float¥loatForKey: (NSString *defaultName InvokesstringForKey: with keydefaultNameReturns O if
no string is returned. Otherwise, the resulting string is
sent aloatValue message, which provides this
method’s return value.

— (int)integerForKey:(NSString *JdefaultName InvokesstringForKey: with keydefaultNameReturns O if
no string is returned. Otherwise, the resulting string is
sent d@ntValue message, which provides this method’s
return value.

— (id)objectForKey: (NSString *defaultName Returns the value of the first occurrence of the specified
default, searching the domains included in the search
list. Returnanil if the default isn’t found.

— (voidyemoveObjectForKey:(NSString *defaultName
Removes the value for the given default in the standard
application domain. Removing a default has no effect
on the value returned by tlobjectForKey: method if
the same key exists in a domain that precedes the
standard application domain in the search list.

— (void)setBool(BOOL)value Sets the value of the specified default to a string
forKey: (NSString *JdefaultName representation of YES or NO, dependingvalfue
InvokessetObject:forKey: as part of its
implementation.

— (void)setFloat(floativalue Sets the value of the specified default to a string
forKey: (NSString *defaultName representation ofalue InvokessetObject:forKey: as
part of its implementation.
— (void)setinteger(int)value Sets the value of the specified default to a string
forKey: (NSString *defaultName representation ofalue InvokessetObject:forKey: as

part of its implementation.

2-148 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (void)setObject:(id)value Sets the value of the specified default in the standard
forKey: (NSString *defaultName application domain. Setting a default has no effect on
the value returned by tlubjectForKey: method if the
same key exists in a domain that precedes the
application domain in the search list.

— (NSArray *stringArrayForKey: (NSString *defaultName
InvokesobjectForKey: with keydefaultNameReturns the
corresponding value if it's an NSArray object
containing NSStrings, amdl otherwise. The class of
each object is determined using tbi€indOfClass:
test.

— (NSString *stringForKey: (NSString *)defaultName
InvokesobjectForKey: with keydefaultNameReturns the
corresponding value if it's an NSString object
(according to thésKindOfClass: test) andil
otherwise.

Initializing the User Defaults

— (id)init Initializes defaults for the current user (who's identified by
examining the environment). This method doesn't put
anything in the search list. Invoke it only if you've
allocated your own NSUserDefaults object instead of
using the shared one. Retugsdf

— (id)initWithUser: (NSString *userName Like init, but initializes defaults for the specified user.

Returning the Search List

— (NSMutableArray *$earchList Returns a mutable array of domain names, signifying the
domains thabbjectForKey: will search. You can
customize the search list by modifying the array that's
returned. Non-existent domain names in the list are
ignored.

Maintaining Persistent Domains

— (NSDictionary *persistentDomainForName(NSString *domainName
Returns a dictionary corresponding to the specified
persistent domain. The keys in the dictionary are names
of defaults, and the value corresponding to each key is
a property list data object.

OpenStep Specification—10/19/94 Classes: NSUserDefault3-149

— (NSArray *persistentDomainNames Returns an array containing the names of the persistent
domains. Each domain can then be retrieved by
invoking persistentDomainForName:

— (voidyemovePersistentDomainForNamgNSString *domainName
Removes the named persistent domain from the user’s
defaults. The first time that a persistent domain is
changed aftesynchronize an
NSUserDefaultsChanged notification is posted.

— (void)setPersistentDomain{NSDictionary *Jdomain
forName:(NSString *domainName Sets the dictionary for the persistent domain named
domainNamegraises an NSInvalidArgumentException
if a volatile domain wittdomainNamelready exists.
The first time that a persistent domain is changed after
synchronize an NSUserDefaultsChanged notification
is posted.

— (BOOL)synchronize Saves any modifications to the persistent domains and
updates all persistent domains that were not modified to
what is on disk. Returns NO if it could not save data to
disk. Since theynchronizemethod is automatically
invoked at periodic intervals, use this method only if
you cannot wait for the automatic synchronization (for
example if your application is about to exit), or if you
want to update user defaults to what is on disk even
though you have not made any changes.

Maintaining V olatile Domains

— (voidyemoveVolatilieDomainForName(NSString *JdomainName
Removes the named volatile domain from the user’s
defaults.

— (void)setVolatileDomain(NSDictionary *domain
forName:(NSString *domainName Sets the dictionary tdomainfor the volatile domain
nameddomainNameThis method raises an
NSInvalidArgumentException if a persistent domain
with domainNamelready exists.

— (NSDictionary *yolatileDomainForName:(NSString *domainName
Returns a dictionary corresponding to the specified volatile
domain. The keys in the dictionary are names of
defaults, and the value corresponding to each key is a
property list data object.

2-150 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

— (NSArray *VvolatiieDomainNames Returns an array containing the names of the volatile
domains. Each domain can then be retrieved by calling
volatileDomainForName:.

Making Advanced Use of Defaults

— (NSDictionary *lictionaryRepresentation Returns a dictionary that contains a union of all key-value
pairs in the domains in the search list. As with
objectForKey:, key-value pairs in domains that are
earlier in the search list take precedence. The combined
result doesn’t preserve information about which domain
each entry came from.

— (void¥xegisterDefaults:(NSDictionary *dictionary
Adds the contents afictionaryto the registration domain.
If there is no registration domain yet, it's created using
dictionary, and NSRegistrationDomain is added to the
end of the search list.

OpenStep Specification—10/19/94 Classes: NSUserDefault3-151

NSValue

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSValue.h

Foundation/NSGeometry.h

Class Description

NSValue objects provide an object-oriented wrapper for the data types defined in standard C and Objective C. The
NSValue class is often used to put Objective C and standard C data types into collections that require objects, such
as NSArray objects. When a value object is instantiated, it is encoded with the specified data type.

The NSValue class declares the programmatic interface to an object that contains a C data type. It provides methods
for creating value objects that contain values of a specified data type, pointers, and other objects.

Use NSValue objects to put C types into collections. Use NSNumber objects to put numbers into collections.

The following code puts an NSRange into an NSArray, using the Objec@erCodealirective to get a character
string that encodes the type structure of NSRange:

[myArray insertObject:[NSValue value:&range withObjCType:@encode(NSRange)] atindex:n]
To get the value back, you would do this:
[[myArray objectAtindex:n] getValue:&range]

NSValue objects are provided with generic coding and copying behavior. To subclass NSValue and preserve class
when encoding or copying, overridlassForCoder initWithCoder:, encodeWithCoder: (for encoding), and
copyWithZone: (for copying).

General Exception Conditions

NSValue can raise NSinternallnconsistencyException in a variety of cases where an unkown Objective C type is
found. In addition, NSValue’s implementationesfcodeWithCoder: can raise NSinvalidArgumentException if
an attempt is made to encodzd.

2-152 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Allocating and Initializing Value Objects

+ (NSValue *yalue:(const void *yalue Creates and returns a value object containing the value
withObjCType: (const char *ype valueof the Objective C typgpe

+ (NSValue *yalueWithNonretainedObject: (id)anObject
Creates and returns a value object containing the object
anObjectwithout retaininganObject This is
provided as a convenience method: the statement
[NSValue valueWithNonretainedOjeatiObjec} is
equivalent to the statement [NSValue valugn®bject
withObjCType: @encode(void *)].

+ (NSValue *yvalueWithPointer: (const void *pointer
Creates and returns a value object that contains the
specified pointerThis is provided as a convenience
method: the statemefNSValue
valueWithPointepointer is equivalent to the statement
[NSValue value:&ointer
withObjCType:@encode(void *)].

Allocating and Initializing Geometry V alue Objects

+ (NSValue *yalueWithPoint: (NSPointpoint Creates and returns a value object that contains the
specifiedNSPoint structure (which represents a
geometrical point in two dimensions).

+ (NSValue *yvalueWithRect:(NSRectject Creates and returns a value object that contains the
specifiedNSRect structure, representing a rectangle.

+ (NSValue *yalueWithSize(NSSizepize Creates and returns a value object that contains the
specifiedNSSize structure (which stores a width and a
height).

Accessing Data in Value Objects
— (void)getValue:(void *)value Copies the receiver’s data intalue

— (id)nonretainedObjectValue Returns the non-retained object that’s contained in the
receiver. It's an error to send this message to an
NSValue object that doesn’t store a nonretained object.

— (const char ®bjCType Returns the Objective C type of the data contained in the
receiver.
— (void *)pointerValue Returns the value pointed to by a pointer contained in an

value object. It's an error to send this message to an
NSValue that doesn’t store a pointer.

OpenStep Specification—10/19/94 Classes: NSValug-153

Accessing Data in Value Geometry Objects

— (NSPointpointValue Returns the point structure that's contained in the receiver.
- ectlectValue eturns the rectangle structure that's contained in the
NSR tval Ret th t le structure that’ t dinth
receiver.
- ize$izeValue eturns the size structure that’s contained in the receiver
NSS Val Ret th truct that t dinth

2-154 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Protocols

NSCoding
Adopted By: NSObject
Declared In: Foundation/NSObject.h

Protocol Description

The NSCoding protocol declares the two methods that a class must implement so that objects of that class can be
encoded and decoded. This capability provides the basis for archiving (where objects and other structures are stored
on disk) and distribution (where objects are copied to different address spaces).

When an object receives ancodeWithCoder: message, it should write its instance variables (and, through a
message tsuper, the instance variables that it inherits) to the supplied NSCoder. Similarly, when an object receives
aninitWithCoder: message, it should initialize its instance variables (and inherited instance variables, again
through a message soper) from the data in the supplied NSCoder. See the NSCoder and NSArchiver class
specifications for more complete information.

Encoding and Decoding Objects
— (void)encodeWithCoder{NSCoder *aCoder Encodes the receiver usia@oder

— (id)initWithCoder: (NSCoder *aDecoder Initializes and returns a new instance from data in
aDecoder

OpenStep Specification—10/19/94 Protocols: NSCoding2-155

NSCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

A class whose instances provide functional copies of themselves should adopt the NSCopying protocol. The exact
meaning of “copy” can vary from class to class, but a copy must be a functionally independent object, identical to
the original at the time the copy was made. Where the concept “immutable vs. mutable” applies to an object, this
protocol produces immutable copies; see the NSMutableCopying protocol for details on making mutable copies.
Property list classes (NSString, NSData, NSArray, and NSDictionary) guarantee immutable returned values.

In most cases, to produce a copy that’s independent of the origilepaopynust be made. A deep copy is one

in which every instance variable of the receiver is duplicated, instead of referencing the variable in the original
object. If the receiver’s instance variables themselves have instance variables, those too must be duplicated, and so
on. A deep copy is thus a completely separate object from the original; changes to it don't affect the original, and
changes to the original don’t affect it. Further, for an immutable copy, no part at any level may be changed, making

a copy a “snapshot” of the original object.

Making a complete deep copy isn’'t always needed. Some objects can reasonably share instance variables among
themselves—a static string object that gets replaced but not modified, for example. In such cases your class can
implement NSCopying more cheaply than it might otherwise need to.

The typical usage of NSCopying is to create “passing by value” value objects.

Contrary to most methods, the returned object is owned by the caller, who is responsible for releasing it.

Copying Objects

— (id)copyWithZone:(NSZone *zone Returns a new instance that’s a functional copy of the
receiver. Memory for the new instance is allocated from
zone. For collections, creates a deep (recursive) copy.
The copy returned is immutable if the consideration
“immutable vs. mutable” applies to the receiving
object; otherwise the exact nature of the copy is
determined by the class. The returned object is owned
by the caller, who is responsible for releasing it.

2-156 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSLocking

Adopted By: NSConditionLock
NSLock
NSRecursiveLock

Declared In: Foundation/NSLock.h

Protocol Description

This protocol is used by classes that provide lock objects. The lock objects provided by OpenStep are used only for
protecting critical sections of code: sections that manipulate shared data and that can be executed simultaneously
in several threads. Lock objects—except for NSConditionLock objects—contain no useful data.

Although an object that isn't a lock could adopt the NSLocking protocol, it may be more desirable to design the
object so that all locking is handled internally, through normal use rather than requiring that the object be explicitly
locked and unlocked.

In order to enable clients to only have locks when processes become multithreaded, it is permissible to unlock a
lock freshly created (i.e. that has not been locked)—unless it is a recursive lock.

Three classes conform to the NSLocking protocol:

Class Usage
NSLock Protect critical sections of code.
NSConditionLock Protects critical sections of code, but can also be used to postpone entry to a

critical section until a condition is met. This class is functionally a superset of
the NSLock class, though unlocking is slightly more expensive.

NSRecursiveLock Protects critical sections from access by multiple threads, but allows a single
thread to acquire a lock several times without deadlocking.

None of these classes busy-waits while the lock is unavailable. All classes may all be efficiently used for long

sections of atomic code. See the class specifications for these classes for further information on their behavior and
usage.

Locking Operations

— (void)ock Acquires a lock. Applications generally do this when
entering a critical section of their code. A thread will
sleep if it can’t immediately acquire the lock.

— (voidunlock Releases a lock. Applications generally do this when
exiting a critical section of their code.

OpenStep Specification—10/19/94 Protocols: NSLocking2-157

NSMutableCopying

Adopted By: various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

A class that defines an “immutable vs. mutable” distinction adopts this protocol to allow mutable copies of its
instances to be made. A mutable copy of an object is usustigllaw copy(as opposed to thieep copyefined

in the NSCopying protocol specification). The original and its copy share references to the same instance variables,
so that if a component of the copy is changed, for example, that change is reflected in the original.

A class that doesn't define an “immutable vs. mutable” distinction but that needs to offer both deep and shallow
copying shouldn’t adopt this protocol. The NSCopying methods should by default be assumed to produce deep
copies; the class can then also implement methods to produce shallow copies.

Contrary to most methods, the returned value is owned by the caller, who is responsible for releasing it.

Making Mutable Copies of Objects

— (id)mutableCopyWithZone:(NSZone *yone Returns a new instance that’s a top level, mutable copy of
the receiver. For a collection, objects in the collection
are retained. Memory for the new instance is allocated
from zone The returned object is owned by the caller,
who is responsible for releasing it.

2-158 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the serialization
and deserialization process. The primary purpose of this protocol is to allow for the serialization of objects and
other data types that aren’t directly supported by OpenStep’s serialization facility. (See the NSSerializer class
specification for information on serialization.)

NSMutableData declares the method that's used to begin the serialization process:

- (void)serializeDataAt:(const void *)data
ofObjCType:(const char *)type
context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialized all standard Objective C typgdlpat, character strings, and so on) except for objects,
union, andvoid *. If, during the serialization process, an object is encountered, the object passed as the callback
argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {
NSString *stockName;
float value;

3

The Obijective C type code for this structure is {@f}, so the serialization process begins with this message: (Assume
thattheData is the NSMutableData object that’s doing the serializatiorhaikr is an object that conforms to
the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType: "{@f}" context:helper];

OpenStep Specification—10/19/94 Protocols: NSObjCTypeSerializationCallBa2kL59

Since the first field of the structure is an unsupported type, the helper object is sent a
serializeObjectAt:ofObjCType:intoData: message, letting it serialize the objéelper might implement the
method in this way:

- (void)serializeObjectAt:(id *)objectPtr
ofObjCType:(const char *)type
intoData:(NSMutableData *)theMutableData

NSString *nameObject;
char *companyName

nameObject = *objectPtr;
companyName = [nameObject cString];

[theData serializeDataAt:&companyName ofObjCType:@encode(typeof(companyName))
context:nil]

}

The callback object is free to serialize the target object as it wishes. In thisetpeesimply extracts the company

name from the NSString object and then has that character string serialized. Once this callback method finishes
executing, the original methoddrializeDataAt:ofObjCType:context:) resumes execution and serializes the
second field of the structure. Since this second field contains a supportetbbtpetiie callback method is not
invoked again.

Deserialization follows a similar pattern, except in this case NSData declares the central method
deserializeDataAt:ofObjCType:atCursor:context:.. The deserialization of the example structure starts with a
message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;
[theData deserializeDataAt:&aRecord ofObjCType: "{@f}" cursor:&cursor context:helper];

(The cursor argument is a pointer to zero since we're starting at the beginning of the data in the NSData object.)

When this method is invoked, the callback object receives a
deserializeObjectAt:ofObjCType:fromData:atCursor: message, as declared in this protocol. The callback
object can then reestablish the first field of the structure. For exdmefger might implement the method in this
way:

- (void) deserializeObjectAt:(id *)objectPtr
ofObjCType:(const char *)type
fromData:(NSData *)data
atCursor:(unsigned *)cursor

char *companyName;

[theData deserializeDataAt:&companyName ofObjCType: * atCursor:cursor context:nil];
*objectPtr = [[NSString stringWithCString:companyName] retain];

2-160 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Callback Handling

— (void)deserializeObjectAt:(id *) object
ofObjCType: (const char *ype
fromData: (NSData *fata
atCursor: (unsigned int*yursor

— (void)serializeObjectAt:(id *)object
ofObjCType: (const char *ype
intoData: (NSMutableData ®ata

OpenStep Specification—10/19/94

The implementor of this method decodes the referenced
objec{which should always be tfpe"@") located at
the cursorposition in thedataobject. The decoded
object isnot autoreleased. See description of NSData
methoddeserializeDataAt:0fObjCType:context.

The implementor of this method encodes the referenced
objec{which should always be 6fpe"@") in thedata
object. See description of NSMutableData method
serializeDataAt:ofObjCType:context:

Protocols: NSObjCTypeSerializationCallBa2kL61

NSObject

Adopted By: NSObject
NSProxy
Declared In: Foundation/NSObject.h

Protocol Description

The NSObject protocol declares methods that all objects—no matter which root class they descend from
(NSObject, NSProxy, or another root class)—should implement to work well within OpenStep. Some of the
methods in this protocol reveal an object’s primary attributes: its position in the class hierarchy, its conformance to
other protocols, and whether it responds to specific messages. Others let it be manipulated in various ways. For
example, it can be asked to perform methods that are determined at runtime (usérépthe... methods) or to
participate in OpenStep’s automatic deallocation scheme (usimgt#iie, release andautoreleasemethods).

By conforming to this protocol an object advertises that it has the basic behaviors necessary to work with the
OpensStep’s container classes (such as NSArray or NSDictionary).

Identifying and Comparing Instances

— (unsigned int)ash Returns an unsigned integer that can be used as a table
g g g
address in a hash table structure. Two objects that are
equal must hash to the same value.

— (BOOL)isEqual:(id)anObject Returns YES if the receiver amtiObjecthave equal
values; otherwise returns NO.

— (id)self Returns the receiver.

Identifying Class and Superclass
— (Classglass Returns the class object for the receiver’s class.

— (Class3uperclass Returns the class object for the receiver’s superclass.
Determining Allocation Zones

— (NSZone *yone Returns a pointer to the zone from which the receiver was
allocated.

2-162 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Sending Messages Determined at Run Time

— (id)perform: (SEL)aSelector Sends amSelectomessage to the receiver and returns the
result of the message.dBelectoiis null, an
NSInvalidArgumentException is raised.

— (id)perform: (SEL)aSelector Sends amaSelectomessage to the receiver wihObject
withObject: (id)anObject as an argument. #Selectoiis null, an
NSlInvalidArgumentException is raised.
— (id)perform: (SEL)aSelector Sends the receiver aselectomessage witanObjectand
withObject: (id)anObject anotherObjecs arguments. HSelectoiis null, an
withObject: (id)anotherObject NSinvalidArgumentException is raised.

Identifying Proxies

— (BOOL)isProxy Returns YES to indicate that the receiver is an NSProxy,
rather than an object that descends from NSObject.
Otherwise, it returns NO.

Testing Inheritance Relationships

— (BOOL)sKindOfClass:(ClasspClass Returns YES if the receiver is an instanca®Gfassor an
instance of any class that inherits fra@lass
Otherwise, it returns NO.

— (BOOL)sMemberOfClass{ClassaClass Returns YES if the receiver is an instanca®fass
Otherwise, it returns NO.

Testing for Protocol Conformance

— (BOOL)conformsToProtocol:(Protocol *aProtocol
Returns YES if the class of the receiver conforms to
aProtocol and NO if it doesn't.

Testing Class Functionality

— (BOOLYespondsToSelecto(SEL)aSelector Returns YES if the receiver implements or inherits a
method that can responddBelectomessages, and NO
if it doesn’t.

OpenStep Specification—10/19/94 Protocols: NSObjec®2-163

Managing Reference Counts

— (id)autorelease

— (oneway voidelease

— (id)retain

— (unsigned intetainCount

Describing the Object
— (NSString *fescription

2-164 Chapter 2: Foundation Kit

As defined in the NSObject class, decrements the receiver’s
reference count. When the count reaches 0, adds the
object to the current autorelease pool. Retaatis
Objects in the pool are released later, typically at the top
of the event loop.

As defined in the NSObject class, decrements the receiver's
reference count. When the count reaches 0, the object is
automatically deallocated immediately.

As defined in the NSObiject classtain increments the
receiver’s reference count. You send an objeetain
message when you want to prevent it from being
deallocated without your express permission. Returns
selfas a convenience.

Returns the receiver’s reference count for debugging
purposes.

Returns a human-readable description of the receiver.

OpensStep Specification—10/19/94

Foundation Kit Functions

Memory Allocation Functions

Get the Virtual Memory Page Size
unsignedNSPageSizévoid)
unsignedNSLogPageSizgroid)

Returns the number of bytes in a page.

Returns the binary log of the page size.

unsignedNSRoundDownToMultipleOfPageSizéunsignedoyteCounk

Returns the multiple of the page size that is closest to, but
not greater tharhyteCount

unsignedNSRoundUpToMultipleOfPageSizéunsignedoyteCouny

Get the Amount of Real Memory

unsignedNSRealMemoryAvailableg(void)

Allocate or Free Virtual Memory

Returns the multiple of the page size that is closest to, but
not less tharhyteCount

Returns the number of bytes available in the RAM.

void *NSAllocateMemoryPagegunsignedoyteCounk

void NSDeallocateMemoryPaggsoid *pointer,
unsignecdbyteCounx

void NSCopyMemoryPageéconst void source
void *destination
unsignecbyteCouny

Get a zone

NSZone*NSCreateZongunsignedstartSize
unsignedgranularity,
BOOL canFreg

OpenStep Specification—10/19/94

Allocates the integral number of pages whose total size is
closest to, but not less thdnteCountwith the pages
guaranteed to be zero-filled.

Deallocates memory that was allocated with
NSAllocateMemoryPages()

Copies (or copies-on-writdyteCounbytes fromsource
todestination

Creates and returns pointer to a new zors¢aofSizebytes,
that grows and shrinks lgyanularity bytes. IfcanFree
is NO, the allocator never frees memory, amalloc()
will be fast.

Foundation Kit Functions 2-165

NSZone*NSDefaultMallocZone(void)

NSZone*NSZoneFromPointer(void *pointer)

Allocate or Free Memory in a Zone

void *NSZoneMalloc(NSZone *%one
unsignedsize

void *NSZoneCallodNSZone %one
unsignechumElems
unsignechumBytey

void *NSZoneRealloNSZone %Zone
void *pointer,
unsignedsize

void NSRecycleZon@NSZone zong

void NSZoneFre€dNSZone %one
void *pointer)

Name a Zone

void NSSetZoneNam@NSZone *%2one
NSString hamé

NSString*NSZoneNam&NSZone *zong

2-166 Chapter 2: Foundation Kit

Returns the default zone, which is created automatically at
startup. This is the zone usedrnglloc().

Returns the zone for thpointerblock of memory, or
NULL if the block wasn't allocated from a zone. The
pointer must be one that was returned by a prior call to
an allocation function.

Allocatessizebytes inzone,and returns a pointer to the
allocated memory.

Allocates memory frormonefor numElemlements, each
with a size ohumBytesand returns a pointer to the
memory. The memory is initialized with zeros.

Changes the size of the block of memory pointed to by
pointerto sizebytes. It may allocate new memory to
replace the old, in which case it moves the contents of
the old memory block to the new block, up to a
maximum ofsizebytes. Thepointermay be NULL.

Freeszoneafteradding any of its pointers still in use to the
default zone. (This strategy prevents retained objects
from being inadvertently destroyed.)

Returns memory to the zone from which it was allocated.
The standard C functidinee() does the same, but
spends time finding which zone the memory belongs to.

Sets the specified zone’s nama&ame which can aid in
debugging.

Returns the name abne

OpensStep Specification—10/19/94

Object Allocation Functions

Allocate or Free an Object

NSObject*NSAllocateObject(ClassaClass Allocates and returns a pointer to an instancGifiss
unsignecdextraBytes created in the specified zone (or in the default zone, if
NSZone %Zzong zonds NULL). extraBytegusually 0) states the number

of extra bytes required for indexed instance variables.

NSObject*tNSCopyObject(NSObject 'anObject Creates and returns a new object that’s an exact copy of

unsignedextraBytes anObject The second and third arguments have the
NSZone %Zzong same meaning as MSAllocateObject().
void NSDeallocateObjecfNSObject ‘anObjec) DeallocatesanObject which must have been allocated

usingNSAllocateObject()

Decide Whether to Retain an Object

BOOL NSShouldRetainWithZong NSObject "anObject
NSZone tequestedZone Returns YES ifequestedZonis NULL, the default zone,
or the zone in whichnObjectwas allocated. This
function is typically called from inside an NSObiject’s
copyWithZone: method, when deciding whether to
retainanObjectas opposed to making a copy of it.

Modify the Number of References to an Object

BOOL NSDecrementExtraRefCountWasZerdgid anObjec}
Returns YES if the externally maintained “extra reference
count” foranObjectis zero; otherwise, this function
decrements the count and returns NO.

void NSIncrementExtraRefCount(id anObjec} Increments the externally maintained “extra reference
count” foranObject The first reference (typically done
in the+alloc method) isn’t maintained externally, so
there’s no need to call this function for that first
reference.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-167

Error-Handling Functions

Change the Top-level Error Handler

NSUncaughtExceptionHandl&NSGetUncaughtExceptionHandlelvoid)
Returns a pointer to the function serving as the top-level
error handler. This handler will process exceptions
raised outside of any exception-handling domain.

void NSSetUncaughtExceptionHandlefNSUncaughtExceptionHandlehandle)
Sets the top-level error-handling functiorhiandler If
handleris NULL or this function is never invoked, the
default top-level handler is used.

Macros to Handle an Exception

NS_DURING Marks the beginning of an exception-handling domain (a
portion of code delimited bMS DURINGand
NS_HANDLER). When an error is raised anywhere
within the exception-handling domain, program
execution jumps to the first line of code in the exception
handler. It's illegal to exit the exception-handling
domain by any other means than
NS_VALUERETURN, NS_VOIDRETURN, or falling
out the bottom.

NS_ENDHANDLER Marks the ending of an exception handler (a portion of
code delimited by NS_HANDLER and
NS_ENDHANDLER).

NS_HANDLER Marks the ending of an exception-handling domain and the
beginning of the corresponding exception handler.
Within the scope of the handler, a local variable called
exception stores the raised exception. Code delimited
by NS_HANDLERandNS_ENDHANDLER is never
executed except when an error is raised in the preceding
exception-handling domain.

valueNS_VALUERETURN(value type Causes the method (or function) in which this macro occurs
to immediately returwvalueof typetype This macro
can only be used within an exception-handling domain.

NS_VOIDRETURN Causes the method (or function) in which this macro occurs
to return immediately, with no return value. This macro
can only be placed within an exception-handling
domain.

2-168 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Call the Assertion Handler from the Body of an Objective-C Method

NSAssertBOOL condition, Calls the NSAssertionHandler object for the current thread
NSString *descriptior) if conditionis false. Thalescriptionshould explain the
error, formatted as for the standard C funcpantf ();
it need not include the object’s class and method name,
since they're passed automatically to the handler.

NSAssert180O0L condition Like NSAssert() but the format string description
NSString *description includes a conversion specification (such as %s or %d)
arg) for the argumendrg, in the style oprintf() . You can

pass an object iarg by specifyingo@, which gets
replaced by the string that the object&scription
method returns.

NSAssertBOOL condition Like NSAssert1() but with two arguments.
NSString *description
argl,
arg2)

NSAssert3BOOL condition Like NSAssert1() but with three arguments.
NSString *description
argl,
argz,
arg3)

NSAssert480O0L condition Like NSAssert1() but with four arguments.
NSString *description
argl,
argz,
args,
arg4)

NSAssert580OO0L condition Like NSAssert1() but with five arguments.
NSString *description
argl,
arg2,
arg3,
arg4,
argy)

Call the Assertion Handler from the Body of a C Function

NSCAsser{BOOL condition, Calls the NSAssertionHandler object for the current thread
NSString *descriptior) if conditionis false. Thalescriptionshould explain the
error, formatted as for the standard C funcpantf() ;
it need not include the function name, which is passed
automatically to the handler.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-169

NSCAssert{BOOL condition Like NSCAssert() but the format stringescription
NSString *description includes a conversion specification (sucPoasor %d)
arg) for the argumerurg, in the style oprintf() .

NSCAssertZBOOL condition Like NSCAssert1() but with two arguments.
NSString description
argl,
arg2)

NSCAssert3BOOL condition Like NSCAssert1() but with three arguments.
NSString *description
argl,
argz,
arg3)

NSCAssert4BOOL condition Like NSCAssert1() but with four arguments.
NSString "description,
argl,
arg2,
arg3,
arg4)

NSCAssert§BOOL condition Like NSCAssert1() but with five arguments.
NSString *description
argl,
argz,
arg3,
arg4,
args)

Validate a Parameter

NSParameterAsser(BOOL condition Like NSAssert() but the description passed is “Invalid
parameter not satisfying: ” followed by the text of
condition(which can be any boolean expression).

NSCParameterAsser(BOOL condition) Like NSParameterAssert() but to be called from the body
of a C function.

Geometric Functions

Create Basic Structures

NSPointNSMakePoint(float x, floaty) Create an NSPoint having the coordinatesdy.

2-170 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

NSSizeNSMakeSizefloatw, floath)

Create an NSSize having the specified width and height.

NSRectNSMakeRectfloatx, floaty, floatw, floath) Create an NSRect having the specified origin and size.

NSRangeNSMakeRange(nsigned intocation, unsigned intength

Get a Rectangle’s Coordinates
float NSMaxX(NSRectaRec}
floatNSMaxY (NSRectaRec}
float NSMidX (NSRectaRec}
floatNSMidY (NSRectaRec}
float NSMinX (NSRectaRec}
floatNSMinY (NSRectaRec})
float NSWidth(NSRectaRec}
float NSHeight{NSRectaRec}

Modify a Copy of a Rectangle

NSRectNSInsetRec{NSRectaRect
floatdX,
floatdy)

NSRectNSOffsetRec{NSRectaRect
floatdX,
floatdy)

void NSDivideRec{NSRectinRect
NSRect slice,
NSRect femainder
floatamount
NSRectEdgedgg

NSRectNSIntegralRec{NSRectaRec)

OpenStep Specification—10/19/94

Create an NSRange having the specified location and
length.

Returns the largest x-coordinate value withiRect.
Returns the largest y-coordinate value withliRect
Returns the x-coordinate of the rectangle’s center point.
Returns the y-coordinate of the rectangle’s center point.
Returns the smallest x-coordinate value withitect
Returns the smallest y-coordinate value wisitect .
Returns the width cdiRect

Returns the height @fRect

Returns a copy of the rectangleect altered by moving
the two sides that are parallel to the y-axis inwards by
dX and the two sides parallel to the x-axis inwards by
dy.

Returns a copy of the rectanglRect with its location
shifted bydX along the x-axis and kY along the
y-axis.

Creates two rectanglediceandremainderfrom inRect
by dividinginRectwith a line that’s parallel to one of
inRects sides (namely, the side specified by edge—
either NSMinXEdge, NSMinYEdge, NSMaxXEdge, or
NSMaxYEdge). The size dliceis determined by
amount which measures the distance fredyge

Returns a copy of the rectangiRect expanded outwards
just enough to ensure that none of its four defining
values X, y, width, andheigh) have fractional parts. If
aReck width or heightis zero or negative, this function
returns a rectangle with origin at (0.0, 0.0) and with zero
width and height.

Foundation Kit Functions 2-171

Compute a Third Rectangle from Two Rectangles

NSRectNSUnionRec{NSRectaRect
NSRectbRec}

NSRectNSIntersectionRec{NSRectaRect
NSRectbRec}

Test Geometric Relationships

BOOL NSEqualRect§NSRectaRect
NSRectbRec}

BOOL NSEqualSize§NSSizeaSize
NSSizebSizé¢

BOOL NSEqualPoint§NSPointaPoint,
NSPointbPoini

BOOL NSIsEmptyRect{NSRectaRec}

BOOL NSMouselnRec{NSPointaPoint,
NSRectaRect
BOOL flipped

BOOL NSPointinRect(NSPointaPoint,
NSRectaRec)

BOOL NSContainsRec(NSRectaRect
NSRectbRec}

2-172 Chapter 2: Foundation Kit

Returns the smallest rectangle that completely encloses
bothaRectandbRect.If one of the rectangles has zero
(or negative) width or height, a copy of the other
rectangle is returned; but if both have zero (or negative)
width or height, the returned rectangle has its origin at
(0.0, 0.0) and has zero width and height.

Returns the graphic intersectionadtectandbRect If the
two rectangles don't overlap, the returned rectangle has
its origin at (0.0, 0.0) and zero width and height. (This
includes situations where the intersection is a point or a
line segment.)

Returns YES if the two rectanglaRectandbRectare
identical, and NO otherwise.

Returns YES if the two sizesSizeandbSizeare identical,
and NO otherwise.

Returns YES if the two poinePointandbPointare
identical, and NO otherwise.

Returns YES if the rectangle encloses no area at all—that
is, if its width or height is zero or negative.

Returns YES if the point representeddBointis located
within the rectangle representeddfyect It assumes
an unscaled and unrotated coordinate system; the
argumenflippedshould be YES if the coordinate
system has been flipped so that the positive y-axis
extends downward. This function is used to determine
whether the hot spot of the cursor lies inside a given
rectangle.

Performs the same testidSMouselnRect() but assumes
a flipped coordinate system.

Returns YES iaRectcompletely enclosdsRect For this
to be truebRectcan’t be empty and none of its sides can
touch any ofiRecs.

OpensStep Specification—10/19/94

Get a String Representation

NSString NSStringFromPoint(NSPointaPoinf)

NSString NSStringFromRect{NSRectaRec)

NSString NSStringFromSizegNSSizeaSizg

Returns a string of the form “{& y=b}", where a andb
are the x- and y-coordinatesafPoint

Returns a string of the form “{& y=b; width=c;
height=d}", where a, b, c,andd are the x- and
y-coordinates and the width and height, respectively, of
aRect

Returns a string of the form “{widttas height=h}”, where
aandb are the width and height aSize

Range Functions

Query a Range

BOOL NSEqualRange¢NSRangeangel,
NSRangeange?

unsignedNSMaxRanggNSRangeaangée

BOOL NSLocationInRanggunsignedocation,
NSRangeange

Compute a Range from Two Other Ranges

NSRangeNSUnionRangéNSRangeangel,
NSRangeaange?

NSRangeNSintersectionRangéNSRangeangel,
NSRangeange?

Get a String Representation

NSString WNSStringFromRangg NSRangeange

OpenStep Specification—10/19/94

Returns YES ifangelandrange2have the same
locations and lengths.

Returngangelocation +rangelength—in other words, the
number one greater than the maximum value within the
range.

Returns YES ifocationis in range(that is, iflocationis
greater than or equal tangelocation andocationis
less tharNSMaxRangédrangs).

Returns a range whose maximum value is the greater of
rangels andrange2s maximum values, and whose
location is the lesser of the two range’s locations.

Returns a range whose maximum value is the lesser of
rangels andrange2s maximum values, and whose
location is the greater of the two range’s locations.
However, if the two ranges don't intersect, the returned
range has a location and length of zero.

Returns a string of the form: “{locationa; length =b}",
wherea andb are non-negative integers.

Foundation Kit Functions 2-173

Hash Table Functions

Create a Table

NSHashTable NSCreateHashTabléNSHashTableCallBacksallBacks

unsigneccapacity

Creates, and returns a pointer to, an NSHashTable in the
default zone; the table’s size is dependent on (but
generally not equal t@apacity If capacityis 0, a small
hash table is created. The NSHashTableCallBacks
structurecallBackshas five pointers to functions
(documented under “Types and Constants”), with the
following defaults: pointer hashing,hfish()is NULL;
pointer equality, iisEqual() is NULL; no call-back
upon adding an elementrétain() is NULL; no
call-back upon removing an elementdfease()is
NULL; and a function returning a pointer's
hexadecimal value as a stringdéscribe()is NULL.

The hashing function must be defined such that if two
data elements are equal, as defined by the comparison
function, the values produced by hashing on these
elements must also be equal. Also, data elements must
remain invariant if the value of the hashing function
depends on them; for example, if the hashing function
operates directly on the characters of a string, that string
can't change.

NSHashTable NSCreateHashTableWithZondNSHashTableCallBack=allBacks

unsigneccapacity
NSZone %Zong

Like NSCreateHashTable() but creates the hash table in
zoneinstead of in the default zone. @déneis NULL,
the default zone is used.)

NSHashTable NSCopyHashTableWithZongNSHashTable table,

NSZone %Zong

Free a Table

void NSFreeHashTabléNSHashTable table)

void NSResetHashTableNSHashTable table)

2-174 Chapter 2: Foundation Kit

Returns a pointer to a new copytable,created ireone
and containing copies tdibles pointers to data
elements. lzoneis NULL, the default zone is used.

Releases each element of the specified hash table and frees

the table itself.

Releases each element but doesn't deallocate the table. This

is useful for preserving the table's capacity.

OpensStep Specification—10/19/94

Compare Two Tables

BOOL NSCompareHashTableNSHashTable tablel
NSHashTable table? Returns YES if the two hash tables are equal—that is, if
each element dhblelis intable2 and the two tables
are the same size.

Get the Number of Items

unsignedNSCountHashTabl§NSHashTable table) Returns the number of elementdable

Retrieve ltems

void *NSHashGe{NSHashTable table, Returns the pointer in the table that matqbaater (as
const void pointer) defined by thésEqual() call-back function). If there is
no matching element, the function returns NULL

NSArray *"NSAllHashTableObject§NSHashTable table)
Returns an array object containing all the elemerttsobé
This function should be called only when the table
elements are objects, not when they’re any other data

type.

NSHashEnumeratddSEnumerateHashTabléNSHashTable table)

Returns an NSHashEnumerator structure that will cause
successive elementstableto be returned each time
this enumerator is passed to
NSNextHashEnumeratorltem()

void *NSNextHashEnumeratorltem(NSHashEnumeratorehumeratoy
Returns the next element in the table #raimeratoiis
associated with, or NULL é&numeratohas already
iterated over all the elements.

Add or Remove an Iltem

void NSHashInser{NSHashTable table, Insertspointer, which must not be NULL, inttable If
const void pointer) pointermatches an item already in the table, the
previous pointer is released using takease()
call-back function that was specified when the table was
created.

void NSHashInsertKknownAbsent(NSHashTable table,
const void pointer) Insertspointer, which must not be NULL, inttable Unike
NSHashlnsert(), this function raises
NSlInvalidArgumentException thblealready includes
an element that matchpseinter.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-175

void *NSHashInsertlfAbsent(NSHashTable table, If pointermatches an item alreadyteble, this function
const void pointen returns the pre-existing pointer; otherwise, it adds
pointerto the table and returns NULL.

void NSHashRemov@NSHashTable table, If pointermatches an item alreadytable this function
const void pointer) releases the pre-existing item.

Get a String Representation

NSString WNSStringFromHashTablg(NSHashTable table)

Returns a string describing the hash table’s contents. The
function iterates over the table’s elements, and for each
one appends the string returned bydbscribe()
call-back function. If NULL was specified for the
call-back function, the hexadecimal value of each
pointer is added to the string.

Map Table Functions

Create a Table

NSMapTable NSCreateMapTablgNSMapTableKeyCallBackkeyCallBacks

NSMapTableValueCallBackslueCallBacks

unsignedcapacity Creates, and returns a pointer to, an NSMapTable in the
default zone; the table’s size is dependent on (but
generally not equal t@apacity If capacityis 0, a small
map table is created. The NSMapTableKeyCallBacks
arguments are structures (documented under “Types
and Constants”) that are very similar to the call-back
structure used b)SCreateHashTable() in fact, they
have the same defaults as documented for that function.

NSMapTable NSCreateMapTableWithZong[NSMapTableKeyCallBackkeyCallBacks
NSMapTableValueCallBackslueCallBacks
unsigneccapacity Like NSCreateMapTable() but creates the map table in
NSZone %Zong zoneinstead of in the default zone. @éneis NULL,
the default zone is used.)

NSMapTable NSCopyMapTableWithZone(NSMapTable table
NSZone %Zong Returns a pointer to a new copytable,created ireone
and containing copies tdbles key and value pointers.
If zoneis NULL, the default zone is used.

2-176 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Free a Table

void NSFreeMapTablgNSMapTable table) Releases each key and value of the specified map table and
frees the table itself.

void NSResetMapTabléNSMapTable table) Releases each key and value but doesn't deallocate the
table. This is useful for preserving the table’s capacity.

Compare Two Tables:

BOOL NSCompareMapTablegNSMapTable tablel,
NSMapTable table? Returns YES if each key tdblelis intable2 and the two
tables are the same size. Note that this functionmtmes
compare values, only keys.

Get the Number of Items

unsignedNSCountMapTable(NSMapTable table) Returns the number of key/value pairgable

Retrieve ltems

BOOL NSMapMember(NSMapTable table, Returns YES ifable contains a key equal key If so,
const void key originalKeyis set tckey andvalueis set to the value that
void ** originalKey, the tableanaps tdkey.
void **value

void *NSMapGet(NSMapTable table Returns the value thtable maps tdkey or NULL if the
const void key) table doesn't contaikey

NSMapEnumeratolSEnumerateMapTablgNSMapTable table)

Returns an NSMapEnumerator structure that will cause
successive key/value pairstableto be visited each
time this enumerator is passed to
NSNextMapEnumeratorPair().

BOOL NSNextMapEnumeratorPair(NSMapEnumeratorénumeratoyr
void **key Returns NO ienumeratothas already iterated over all the
void **value elements in the table thetumeratois associated with.
Otherwise, this function sekeyandvalueto match the
next key/value pair ithe table, and returns YES.

NSArray *NSAlIMapTableKeys(NSMapTable table)
Returns an array object containing all the keysiioe
This function should be called only when the table keys
are objects, not when they’re any other type of pointer.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-177

NSArray *NSAlIMapTableValues(NSMapTable table)
Returns an array object containing all the valugalite
This function should be called only when the table
values are objects, not when they’re any other type of

pointer.
Add or Remove an Item
void NSMaplnsert(NSMapTable table, Insertskeyandvalueinto table If keymatches a key
const void key already in the tablealueis retained and the previous
const void ¥alug value is released, using the retain and release call-back

functions that were specified when the table was
created. Raises NSinvalidArgumentExceptiokeifis
equal to the notAKeyMarker field of the table’s
NSMapTableKeyCallBacks structure.

void *NSMaplnsertlfAbsent(NSMapTable table, If keymatches a key already table, this function returns
const void key the pre-existing key; otherwise, it addsyandvalueto
const void ¥alug the table and returns NULL. Raises
NSiInvalidArgumentException Keyis equal to the
notAKeyMarker field of the table’s
NSMapTableKeyCallBacks structure.

void NSMaplnsertKknownAbsent(NSMapTable table
const void key Insertskey(which must not be notAKeyMarker) andlue
const void ¥alug into table Unike NSMaplnsert(), this function raises
NSlInvalidArgumentException teiblealready includes
a key that matchdeey.

void NSMapRemovéNSMapTable table If keymatches a key alreadytable, this function releases
const void key) the pre-existing key and its corresponding value.

NSString NSStringFromMapTable(NSMapTable table)

Returns a string describing the map table’s contents. The
function iterates over the table’s key/value pairs, and for
each one appends the striiag= b;\n”, wherea andb
are the key and value strings returned by the
correspondinglescribe()call-back functions. If NULL
was specified for the call-back function, a and b are the
key and value pointers, expressed as hexadecimal
numbers.

2-178 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Miscellaneous Functions

Get Information about a User
NSString NSUserNamévoid)
NSString NSHomeDirectory(void)
NSString NSHomeDirectoryForUsei(NSString *userNamg

Log an Error Message

void NSLog(NSString *format, .). Writes to stderr an error message of the form:
“time processName processID forfhdthe format
argument tdNSLog() is a format string in the style of
the standard C functigprintf() , followed by an
arbitrary number of arguments that match conversion
specifications (such &8s or %d) in the format string.
(You can pass an object in the list of arguments by
specifying%@ in the format string—this conversion
specification gets replaced by the string that the object’s
description method returns.)

void NSLogv(NSString format, va_listargs) Like NSLog(), but the arguments to the format string are
passed in a single va_list, in the mannerpintf() .

Get Localized Versions of Strings

NSString WNSLocalizedStringNSString *key Returns a localized version of the string designatdcdeipy
NSString ‘tomment The default string tabld_fcalizable.stringg in the
main bundle is searched @y commenis ignored, but
can provide information for translators

NSString NSLocalizedStringFromTable(NSString key

NSString *ableName Like NSLocalizedString(), but searches the specified
NSString ‘tommenit table.

NSString NSLocalizedStringFromTableInBundle(NSString key
NSString *ableName Like NSLocalizedStringFromTable, but uses the
NSBundle *aBundle specified bundle instead of the application’s main
NSString ‘tomment bundle.

OpenStep Specification—10/19/94 Foundation Kit Functions 2-179

Convert to and from a String

ClassNSClassFromString(NSString *aClassName Returns the class object nameddtjlassNameor nil if
none by this name is currently loaded.

SEL NSSelectorFromString(NSString *aSelectorName
Returns the selector namedddyelectorNameor zero if
none by this name exists

NSString WNSStringFromClassClassaClasg Returns an NSString containing the nama®lass.

NSString NSStringFromSelectorSEL aSelectoy Returns an NSString containing the nama®$élector.

Compose a Message To Be Sent Later to an Object

NSInvocation NS_INVOCATION(ClassaClass Returns an NSinvocation object which you can later ask to

instanceMessage dispatchinstanceMessag® an instance @Class.
(You later use NSInvocation&etTarget: method to
make a specific instance a€lassthe receiver of the
message, after which you usgoke to cause the
message to be seartdgetReturnValue: to retrieve the
result.)Because this is a macmgessagean be any
Objective C message understood by an instance of
aClass even a message with multiple arguments.

NSInvocation NS_MESSAGE{d anObject Like NS_INVOCATION() , but the first argument is an
instanceMessage instance of a class, rather than a class. The target of the
message will banObject,so later you don’t use
setTarget:, only invoke andgetReturnValue:.

2-180 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Types and Constants

Exception Handling

typedef struct _NSHandl&SHandler; Exception handler information.

typedef volatile voilNSUncaughtExceptionHandle(NSException &xceptio;
Register an uncaught exception handler.

NSString NSlInconsistentArchiveException Consistency error in archive file.

NSString NSGenericException General programming error.

NSString NSinternallnconsistencyException Some item that should be invariant changed.

NSString NSInvalidArgumentException; Invalid argument.

NSString NSMallocException No memory left to allocate.

NSString NSRangeException Attempt to access an element beyond the limit of an array

or similar structure.
NSString NSByteStoreLockedException
NSString WSByteStoreVersionException
NSString NSBTreeStoreKeyTooLargeException
NSString NSByteStoreDamagedException

Geometry

typedef struct _NSPoint { Point definition.
floatx;
floaty;

} NSPoint,

typedef struct _NSSize { Rectangle sizes.
floatwidth;
float height;

} NSSize

OpenStep Specification—10/19/94 Types and Constant2-181

typedef struct _NSRect { Rectangle.
NSPointorigin;
NSSizesize

} NSRect

typedef enum _NSRectEdge { Sides of a rectangle.
NSMinXEdge,
NSMinYEdge,
NSMaxXEdge,
NSMaxYEdge
} NSRectEdge

const NSPoinNSZeroPoint, A zero point.

const NSRecNSZeroRect A zero origin rectangle.

const NSSiz&lSZeroSize A zero size rectangle.
Hash Table

typedef strucNSHashEnumerator, Private type for enumerating.

typedef struct _NSHashTald#SHashTable Hash table type.

typedef struct { Callback functions.

unsigned (hash)(NSHashTable table const void anObjec;
Hashing function. Note: Elements with equal values must
have equal hash function values.
BOOL (*isEqual)(NSHashTable table, const void anObject const void anObjec};
Comparison function.
void (*retain)(NSHashTable table, const void anObjec};
Retaining function called when adding elements to table.
void (*releas§(NSHashTable table, void *anObjec};
Releasing function called when a data element is removed
from the table.
NSString *(*describg(NSHashTable table, const void anObjec};
Description function.
} NSHashTableCallBacks

2-182 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

const NSHashTableCallBackiSIntHashCallBacks For sets of pointer-sized or smaller quantities.

const NSHashTableCallBacksSNonOwnedPointerHashCallBacks
For sets of pointers hashed by address.

const NSHashTableCallBackisSNonRetainedObjectHashCallBacks
For sets of objects without retaining and releasing.

const NSHashTableCallBacksSObjectHashCallBacks
For sets of objects; similar to NSSet.

const NSHashTableCallBackssOwnedPointerHashCallBacks
For sets of pointers with transfer of ownership upon
insertion.

const NSHashTableCallBackiSPointerToStructHashCallBacks
For sets of pointers to structs when the first field of the
struct is the size of ant.

Map Table
typedef strucNSMapEnumerator; Private type for enumerating.
typedef struct _NSMapTabMSMapTable; Map table type.
typedef struct { Callback functions for a key.

unsigned (hash)(NSMapTable table, const void anObijec};
Hashing function. Note: Elements with equal values must
have equal hash function values.
BOOL (*isEqual)(NSMapTable table const void anObject const void anObjec;
Comparison function.
void (*retain)(NSMapTable table const void anObjec;
Retaining function called when adding elements to table.
void (*releas§(NSMapTable table void *anObjec};
Releasing function called when a data element is removed
from the table.
NSString *(*describg(NSMapTable table const void anObjec;
Description function.
const void hotAKeyMarker ; Quantity that is not a key to the hash table.
} NSMapTableKeyCallBacks

OpenStep Specification—10/19/94 Types and Constant2-183

typedef struct { Callback functions for a value.
void (*retain)(NSMapTable table, const void anObjecj;
Retaining function called when adding elements to table.
void (*releasg(NSMapTable table void *anObjecj;
Releasing function called when a data element is removed
from the table.
NSString *(*describg(NSMapTable table const void anObjecj;
Description function.
} NSMapTableValueCallBacks

#defineNSNotAnIntMapKey ; Quantity that is never a map key.
#defineNSNotAPointerMapKey; Quantity that is never a map key.

const NSMapTableKeyCallBack$SIntMapKeyCallBacks;
For keys that are pointer-sized or smaller quantities.

const NSMapTableValueCallBackiSIntMapValueCallBacks;
For values that are pointer-sized quantities.

const NSMapTableKeyCallBackéSNonOwnedPointerMapKeyCallBacks
For keys that are pointers not freed.

const NSMapTableValueCallBacksSNonOwnedPointerMapValueCallBacks
For values that are owned pointers.

const NSMapTableKeyCallBackéSNonOwnedPointerOrNullMapKeyCallBacks,
For keys that are pointers not freed, or NULL.

const NSMapTableKeyCallBackéSNonRetainedObjectMapKeyCallBacks
For sets of objects without retaining and releasing.

const NSMapTableKeyCallBackéSObjectMapKeyCallBacks
For keys that are objects.

const NSMapTableValueCallBackSObjectMapValueCallBacks
For values that are objects.

const NSMapTableKeyCallBackéSOwnedPointerMapKeyCallBacks
For keys that are pointers with transfer of ownership upon
insertion.

const NSMapTableValueCallBackssOwnedPointerMapValueCallBacks
For values that are owned pointers.

2-184 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

Notification Queue

typedef enum {

NSPostWhenldle Post the notification when the run loop is idle.
NSPOsStASAR Post the notification as soon as possible.
NSPostNow Post the notification immediately.

} NSPostingStyle

typedef enum {

NSNotificationNoCoalescing Do not coalesce similar notifications in the queue.
NSNotificationCoalescingOnName Coalesce notifications in the queue matching name.
NSNotificationCoalescingOnSender Coalesce notifications in the queue matching sender.

} NSNotificationCoalescing

Run Loop
NSString NSConnectionReplyMode NSRunLoop mode in which Distributed Object system
seeks replies.
NSString NSDefaultRunLoopMode Common NSRunLoop mode.

Search Results

typedef enum _NSComparisonResult { Ordered comparison results.
NSOrderedAscending
NSOrderedSame
NSOrderedDescending
} NSComparisonResult
enum { Flags passed to various search methods.
NSCaselnsensitiveSearch
NSLiteralSearch,
NSBackwardsSearch
NSAnchoredSearch
%
enum (NSNotFound}; Indicates an item not found.

OpenStep Specification—10/19/94 Types and Constant2-185

String

typedef unsignetiSStringEncoding Known encodings.

enum Known encodings.
NSASCIIStringEncoding,
NSNEXTSTEPStringEncoding,
NSJapaneseEUCStringEncoding,
NSUTF8StringEncoding,
NSISOLatin1StringEncoding ,
NSSymbolStringEncoding ,
NSNonLossyASCIIStringEncoding,
NSShiftJISStringEncoding,
NSISOLatin2StringEncoding,
NSUnicodeStringEncoding

h
enum _NSOpenStepUnicodeReservedBase { Base for Unicode characters.
NSOpenStepUnicodeReservedBase

%

NSHashStringLength Hash string length.

NSMaximumsStringLength; Maximum string length.
Threads

typedef enum { Thread priorities.

NSiInteractiveThreadPriority ,
NSBackgroundThreadPriority,
NSLowThreadPriority

} NSThreadPriority ;

NSString NSBecomingMultiThreaded Notifications.
NSString NSThreadExiting;

2-186 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

User Defaults

NSString NSArgumentDomain; For defaults parsed from the application’s arguments.
NSString NSGlobalDomain For defaults seen by all applications.

NSString NSRegistrationDomain For registered defaults.

NSString NSUserDefaultsChanged Public notification.

NSString NSWeekDayNameArray, Keys for language-dependent information.

NSString WSShortWeekDayNameArray,
NSString NSMonthNameArray;

NSString NSShortMonthNameArray;
NSString NSTimeFormatString;

NSString NSDateFormatString;

NSString NSTimeDateFormatString;
NSString NSShortTimeDateFormatString;
NSString WSCurrencySymbot

NSString NSDecimalSeparator

NSString NSThousandsSeparatar
NSString NSinternationalCurrencyString ;
NSString WNSCurrencyString;

NSString NSDecimalDigits

NSString NSAMPMDesignation;

OpenStep Specification—10/19/94 Types and Constant2-187

Miscellaneous

typedef struct { Specifies layout of arguments used in invocations.
int offset
int size
char type;

} NSArgumentinfo;

typedef struct _NSRange { Specifies a range of items in arrays, strings, and so on.
unsigned intocation;
unsigned intength;

} NSRange
typedef double&NSTimelnterval; Time interval difference between two dates.
typedef struct _NSZondSZone Large region allocation.

typedef intNSBTreeComparatofNSData *, NSData *, const void *);

2-188 Chapter 2: Foundation Kit OpensStep Specification—10/19/94

3 Display PostScript

Classes

Classes listed here and the protocol in the following section constitute OpenStep’s object-oriented interface to the
Display PostScript System. As such, many of the argument and return types that appear below (specifically, those
having a “DPS” prefix) are not described in this document. Rather, they are detailed in the specification for the
Display PostScript System itself, as found inEhgplay PostScript System, Client Library Reference Maryal

Adobe Systems Incorporated.

NSDPSContext

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: DPSClient/NSDPSContext.h

Class Description

The NSDPSContext class is the programmatic interface to objects that represent Display PostScript System
contexts A context can be thought of ag@stinationto which PostScript code is sent for execution. Each Display
PostScript context contains its own complete PostScript environment including its own local VM (PostScript
Virtual Memory). Every context has its own set of stacks, including an operand stack, graphics state stack,
dictionary stack, and execution stack. Every context also cont&mstRirectory which is local to that context,

plus aSharedFontDirectory that is shared across all contexts. There are three built-in dictionaries in the dictionary
stack. From top to bottom, they argerdict, globaldict, andsystemdict userdict is private to the context, while

OpenStep Specification—10/19/94 Classes: NSDPSContext 3-1

globaldict andsystemdictare shared by all contextdobaldict is a modifiable dictionary containing information
common to all contextsystemdictis a read-only dictionary containing all the PostScript operators.

At any time there is the notion of tarrent contextThe current context for the current thread may be set using
setCurrentContext:.

NSDPSContext objects by default write their output to a specifitadestination. This is used for printing,
FAXing, and for generation of saved EPS (Encapsulated PostScript) code. The means to create contexts that interact
with displays are platform-specific.

The NSApplication object creates a context by default.

NSDPSContext Objects and Display PostScript System Context Records

When an NSDPSContext object is created, it creates and mariig8€antextecord. Programmers familiar with

the client side C function interface to the Display PostScript System can access the DPSContext record by sending
acontextmessage to an NSDPSContext object. You can then operate on this context record using any of the
functions or single operator functions defined in the Display PostScript System client library. Conversely, you can
create an NSDPSContext object from a DPSContext record wilbRBEontextObject()function, as defined in

“Client Library Functions”. You can then work with the created NSDPSContext object using any of the methods
described here.

General Exception Conditions

A variety of exceptions can be raised from NSDPSContext. In most cases, exceptions are raised because of errors
returned from the Display PostScript Server. Exceptions are listed under “Types and Constants.” Also see the
Display PostScript System, Client Library Reference Maryafdobe Systems Incorporated, for more details on
Display PostScript System error names and their possible causes.

Initializing a Context

—initWithMutableData: (NSMutableData *)jata Initializes a newly allocated NSDPSContext that writes its
forDebugging:(BOOL)debug output todata using the language and name encodings
languageEncoding{DPSProgramEncodinigingEnc
nameEcoding(DPSNameEncodingameEnc specified byangEncandnameEncThe callback
textProc:(DPSTextProdpProc functionstProc anderrorProc handle text and errors
errorProc: (DPSErrorPro@rrorProc generated by the context.débugis YES, the output is

given in human-readable form in which large structures
(such as images) may be represented by comments.

Testing the Drawing Destination

— (BOOL)sDrawingToScreen Returns YES if the drawing destination is the screen.

3-2 Chapter 3: Display PostScript OpensStep Specification—10/19/94

Accessing Context Data

— (NSMutableData hutableData Returns the receiver’s data object.

Setting and Identifying the Current Context
+ (NSDPSContext QurrentContext Returns the current context of the current thread.

+ (void)setCurrentContext:(NSDPSContext jontext
Installscontextas the current context of the current thread.

— (DPSContext)PSContext Returns the corresponding DPScontext.

Controlling the Context
— (void)lush Forces any buffered data to be sent to its destination.
— (void)nterruptExecution Interrupts execution in the receiver’'s context.

— (void)notifyObjectWhenFinishedExecuting(id <NSDPSContextNotificationepject
Registersobjectto receive aontextFinishedExecuting
message when the NSDPSContext’s destination is
ready to receive more input.

— (voidyesetCommunication Discards any data that hasn’t already been sent to its
destination.
— (voidwait Waits until the NSDPSContext’s destination is ready to

receive more input.

Managing Returned Text and Errors

+ (NSString *stringForDPSError: (const DPSBinObjSeqReceiror
Returns a string representationeofor.

— (DPSErrorPro@rrorProc Returns the context’s error callback function.
— (void)setErrorProc: (DPSErrorProgroc Sets the context’s error callback functiorptoc.
— (void)setTextProc{DPSTextProgroc Sets the context’s text callback functiorptoc.
— (DPSTextProdgxtProc Returns the context’s text callback function.

Sending Raw Data

— (void)printFormat: (NSString *format,... Constructs a string frofiormatand following string
objects (in the manner gfintf()) and sends it to the
context’s destination.

OpenStep Specification—10/19/94 Classes: NSDPSContext 3-3

— (void)printFormat: (NSString *format Constructs a string frofiormatandargList (in the

arguments:(va_listiargList manner of/printf()) and sends it to the context’s
destination.
— (void)writeData: (NSData *puf Sends the PostScript databufto the context’s destination.

— (voidwritePostScriptWithLanguageEncodingConversion(NSData *puf
Writes the PostScript data luf to the context’s
destination. The data, formatted as plain text, encoded
tokens, or a binary object sequence, is converted as
necessary depending on the language encoding of the
receiving context.

Managing Binary Object Sequences

— (voidjawaitReturnValues Waits for all return values from the result table.

— (voidwriteBOSArray: (const void *fata Write an array to the context’s destination as part of a
count:(unsigned infyfems a binary object sequence. The array is taken ftata
of Type:(DPSDefinedTypdype and consists afemsitems of typeype

— (voidwriteBOSNumString: (const void *fata Write a number string to the context’s destination as part of
length:(unsigned ingount a binary object sequence. The string is taken filam
of Type:(DPSDefinedTypéype as described byount type,andscale.
scale(int)scale

— (void)writeBOSString: (const void *fata Write a string to the context’s destination as part of a
length:(unsigned inf)ytes binary object sequence. The string is taken foytes

(a count)of data.

— (voidwriteBinaryObjectSequence(const void *Hata
length:(unsigned infyytes Write a binary object sequence to the context’s destination.
The sequence consistshftes(a count) ofdata.

— (voidupdateNameMap Updates the context’s name map from the client library’s
name map.

Managing Chained Contexts

— (void)chainChildContext: (NSDPSContext ®hild Links child (and all of it’s children) to the receiver as its
chained context, a context that receives a copy of all
PostScript code sent to the receiver.

— (NSDPSContext thildContext Returns the receiver’s child context,rok if none exists.
— (NSDPSContext ParentContext Returns the receiver’s parent contextnibrif none exists.
— (voidunchainContext Unlinks the child context (and all of it’s children) from the

receiver’s list of chained contexts.

3-4 Chapter 3: Display PostScript OpensStep Specification—10/19/94

Debugging Aids
+ (BOOL)areAllContextsOutputTraced

+ (BOOL)areAllContextsSynchronized

+ (void)setAllContextsOutputTraced:(BOOL)flag

+ (void)setAllContextsSynchronized(BOOL)flag

— (BOOL)isOutputTraced

— (BOOL)sSynchronized

— (void)setOutputTraced:(BOOL)flag

— (void)setSynchronized{BOOL)flag

OpenStep Specification—10/19/94

Returns YES if the data flowing between the application’s
contexts and their destinations is copied to diagnostic
output.

Returns YES if all NSPDSContext objects invokewilaé
method after sending each batch of output.

Causes the data (PostScript code, return values, etc.)
flowing between the all the application’s contexts and
their destinations to be copied to diagnostic output.

Causes thevait method to be invoked each time an
NSDPSContext object sends a batch of output to its
destination.

Returns YES if the data flowing between the application’s
single context and its destination is copied to diagnostic
output.

Returns whether th@ait method is invoked each time the
receiver sends a batch of output to the server.

Causes the data (PostScript code, return values, etc.)
flowing between the application’s single context and the
Display PostScript server to be copied to diagnostic
output.

Sets whether theait method is invoked each time the
receiver sends a batch of output to its destination.

Classes: NSDPSContext 3-5

Protocols

NSDPSContextNotification

Adopted By: no OpenStep classes

Declared In: DPSClient/NSDPSContext.h

Protocol Description

The NSDPSContextNotification protocol supplies information about the execution status of a sequence of
PostScript commands previously sent to the Display PostScript server.

Synchronizing Application and Display PostScript Sewer Execution

— (voidxontextFinishedExecuting(NSDPSContext jontext
Notifies the receiver that the context has finished executing
a batch of PostScript commands. See
notifyObjectWhenFinishedExecuting:
(NSDPSContext).

3-6 Chapter 3: Display PostScript OpensStep Specification—10/19/94

Display PostScript Operators

The PostScript Language Reference Mangsdcond Editionby Adobe Systems Incorporated, provides the
specifications for standard PostScript and Display PostScript operators. Listed here are operators found in
OpenStep but not in the standard implementation of the PostScript language.

Compositing Operators

src, sre, width height srcgstate
desy des} op composite —

desy desy, width height op compositerect —

src, sre, width height srcgstate
desy desj delta dissolve —

Graphics State Operators
coverage setalpha —

— currentalpha coverage

OpenStep Specification—10/19/94

Composites rectangle in source graphics state
with image in current window.

Composites rectangle of current color and
coverage with image in current graphics
state.

Dissolves between area of window referred to
by srcgstateand equal area of window
referred to by the current graphics state.

Sets the current coverage.

Returns the current coverage setting.

Display PostScript Operators 3-7

Client Library Functions

The Display PostScript Client Library is composed of system-dependent and a system-independent parts. The
Display PostScript System, Client Library Reference MaryaRdobe Systems, Incorporated., provides the
specification for the system-independent portion of this library.

Functions that are part of OpenStep’s system-dependent part of the Display PostScript Client Library are listed
here.

PostScript Execution Context Functions

Convert a DPSContext to an NSDPSContext Object

NSDPSContext BPSContextObjectDPSContexttxt)

Communication with the Display PostScript Server

Send a PostScript User Path to the Display PostScript Server

3-8

These functions are used to send a user path, plus onaciibeyto the Display PostScript Server. In the
...WithMatrix forms of these operators, thmtrix operand is the optional matrix argument used by stke,
inustroke, andustrokepath operators. Thenatrix argument may be NULL, in which case it is ignored.

void PSDoUserPatticonst void toords intnumCoordsDPSNumberFormatumType
const DPSUserPathOppss int numOps const void Hbox
DPSUserPathActioaction)

void PSDoUserPathWithMatrix(void *coords int numCoords
DPSNumberFormatumTypeunsigned chardps int numOps
void *bbox DPSUserPathActioaction, floatmatrixq6])

void DPSDoUserPatfiDPSContextontexf const void toords int numCoords

DPSNumberFormatumTypeconst DPSUserPathOpps int
numOps const void bbox DPSUserPathActioaction)

Chapter 3: Display PostScript OpensStep Specification—10/19/94

void DPSDoUserPathWithMatrix(DPSContextontext void *coords int numCoords
DPSNumberFormatumTypeunsigned chardps int numOps
void *bbox DPSUserPathActioaction, floatmatrix6])

Send PostScript Code to the Display PostScript Server

void PSFlushoid)
void PSWait(void)

OpenStep Specification—10/19/94 Client Library Functions ~ 3-9

Single-Operator Functions

Single-operator functions provide a C language interface to the individual operators of the PostScript language. The
specification for a single-operator function is identical to that of the PostScript operator it represétustSdrept
Language Reference Manu8&lecond Editionby Adobe Systems Incorporated, provides the specifications of all
standard PostScript operators. Also refer tddlsplay PostScript System, Client Library Reference Marhyal

Adobe Systems Incorporated. Listed below are single-operator functions that correspond to operators found in
OpenStep but not in the standard implementation of the PostScript language.

These functions have either a “PS” or a “DPS” prefix. For every single-operator function with a “PS” prefix, there’s
a corresponding single-operator function with a “DPS” prefix. The PS and DPS functions are identical except that
DPS functions take an additional (first) argument that represents the PostScript execution context.

Besides using standard C language types, some single-operator functiossrabgct—anint that refers to the
value returned bipPSDefineUserObject()

In the function descriptions belowandy refer to the origin ofourcerectangles, ana andh refer to the width
and height of the source rectangigstateNunrefers to the graphics state (gstate) of the source rectdrgled
dy refer to the origin of thdestinationfor the compositing or dissolving operatiap.refers to the specific
compositing operatiora or alpharefers to the coverage component used for compositing operations.

“PS” Prefix Functions

void PScompositefloat x, floaty, floatw, floath, int gstateNumfloatdx, floatdy, int op)
void PScompositerectijoat x, floaty, floatw, floath, int op)

void PScurrentalpha(float *alpha)

void PSdissolvefloatx, floaty, floatw, floath, int gstateNumfloatdx, floatdy, floatdelta)
void PSsetalphafloat a)

“DPS” Prefix Functions

void DPScompositeDPSContexttxt, floatx, floaty, floatw, floath, int gstateNumfloatdx,
floatdy, int op)

void DPScompositerectiDPSContexttxt, floatdx, floatdy, floatw, floath, int op)
void DPScurrentalpha(DPSContexttxt, float *pcoverage

void DPSdissolveDPSContexttxt, floatx, floaty, floatw, floath, int gstateNumfloatdx, float
dy, floatdelta)

void DPSsetalphaDPSContexttxt, floata)

3-10 Chapter 3: Display PostScript OpensStep Specification—10/19/94

Types and Constants

The Display PostScript Client Library is composed of system-dependent and a system-independent parts. The
Display PostScript System, Client Library Reference MaryaRAdobe Systems, Incorporated, provides the
specification for the system-independent portion of this library.

The defined types, enumeration constants, and global variables that are part of OpenStep’s system-dependent part
of the Display PostScript Client Library are listed here.

Defined Types

Number Formats

typedef enum _DPSNumberFormat {

#ifdef _ BIG_ENDIAN__
dps_float= 48,
dps_long=0,
dps_short= 32

#else
dps_float= 48+128,
dps_long= 0+128,
dps_short=32+128

#endif

} DPSNumberFormat,

Other permitted values are:
» For 32-bit fixed-point numbers, udps_longplus the number of bits in the fractional part.

» For 16-bit fixed-point numbers, udps_shortplus the number of bits in the fractional part.

Backing Store Types

typedef enum _NSBackingStoreType {
NSBackingStoreRetained
NSBackingStoreNonretained
NSBackingStoreBuffered

} NSBackingStoreType

OpenStep Specification—10/19/94 Types and Constants 3-11

Compositing Operations

typedef enum _NSCompositingOperation {
NSCompositeClear
NSCompositeCopy
NSCompositeSourceOver
NSCompositeSourceln
NSCompositeSourceOut
NSCompositeSourceAtop
NSCompositeDataOvey
NSCompositeDataln
NSCompositeDataOut
NSCompositeDataAtop
NSCompositeXOR
NSCompositePlusDarker
NSCompositeHighlight,
NSCompositePlusLighter

} NSCompositingOperation

Window Ordering

typedef enum _NSWindowOrderingMode {
NSWindowAbove,
NSWindowBelow,
NSWindowOut

} NSWindowOrderingMode;

User Path Operators
These constants define the operator numbers used to construct the operator array parameter of DPSDoUserPath.

typedef unsigned ch@PSUserPathOp
enum {

dps_setbbox
dps_movetq
dps_rmovetq
dps_lineto,
dps_rlineto,
dps_curvetq
dps_rcurveto,
dps_arg
dps_arcn,
dps_arct,
dps_closepath

3-12 Chapter 3: Display PostScript OpensStep Specification—10/19/94

dps_ucache

User Path Actions

These constants define the action of a DPSDoUserPath. In addition to the actions defined here, any other system
name index may be used. SeeRbstScript Language Reference Man&sdcond Editionby Adobe Systems
Incorporated, for a detailed list of system name indexes.

typedef enum _DPSUserPathAction {
dps_uappend
dps_ ufill,
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill,
dps_inuedfill,
dps_inustroke,
dps_def
dps_put

} DPSUserPathAction

Enumerations

Special Values for Alpha

enum {
NSAlphaEqualToData,
NSAlphaAlwaysOne

h

User Object Representing the PostScript Null Object

enum {
DPSNullObject

k

OpenStep Specification—10/19/94 Types and Constants 3-13

Symbolic Constants

Error Code Base

DPS_OPENSTEP_ERROR_BASE

Global Variables

Exception Names

NSString DPSPostscriptErrorException;
NSString DPSNameTooLongException;
NSString DPSResultTagCheckException;
NSString DPSResultTypeCheckException;
NSString 'DPSInvalidContextException;
NSString DPSSelectException;

NSString DPSConnectionClosedException;
NSString DPSReadException;

NSString DPSWriteException;

NSString *DPSInvalidFDException;
NSString *DPSInvalidTEException;
NSString *DPSInvalidPortException;
NSString DPSOutOfMemoryException;
NSString DPSCantConnectException;

3-14 Chapter 3: Display PostScript

OpensStep Specification—10/19/94

